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Abstract: Since the introduction of finite element analysis software in the 1970s, structural engineers have 

become increasingly reliant on computational tools to carry out sophisticated simulations of structural 

performance. However, most structural analysis tools can only be used once there is a structure to be analyzed; 

they are not directly applicable in the design or synthesis of a new structural solution. This paper presents new 

research that expands the applicability of computation from structural analysis to structural design, with an 

emphasis on conceptual design applications. Specifically, this paper introduces a new interactive evolutionary 

framework implemented in a web-based structural design tool, structureFIT. This approach enables users to 

explore structural design options through an interactive evolutionary algorithm, and to further refine designs 

through a real-time analysis mode. This paper includes a critical background on optimization and its applications 

in structural design, an overview of the original interactive evolutionary framework, a description of the design 

tool, and a discussion of potential applications. 

 

Keywords: conceptual structural design, structural optimization, computation, evolutionary algorithms 

 

Introduction 

Conceptual Design of Architecture and Structures 

In building design disciplines, including architecture 

and structural engineering, the design process is 

conventionally divided into four sequential phases: 

Conceptual Design, Schematic Design, Design 

Development, and Construction Documents. In 

practice today, major decisions regarding the 

building’s geometry, massing, and overall form are 

usually made during the first phase, Conceptual 

Design (Hsu and Liu 2000; Wang et al. 2002). This 

phase is typically carried out by the architecture team 

alone, before strong involvement of engineering 

consultants. 

 

 

Figure 1. Relationship between design freedom and 

design knowledge in building design projects. After 

Fabrycky and Blanchard (1991) and Paulson (1976).  

After the project has already taken shape, 

structural engineers and other consultants typically 

begin work, with the task of developing engineering 

strategies to enable the conceptual design vision, as 

illustrated in Fig. 1. This means that in standard 

practice, structural considerations are often 

subservient to architectural goals (Macdonald 2001). 

The design process is necessarily linear and 

unidirectional, and there are few opportunities for 

structural input to inform or improve the initial 

concept in significant ways (Holgate 1986). 

 

Significance of Structural Form 

History, theory, and nature show that for structural 

performance, overall form matters much more than 

material, member sizing, or internal topology 

(Thompson 1942; Zalewski et al. 1998; Larsen and 

Tyas 2003; Allen and Zalewski 2010). The geometry 

of a building’s structure directly determines the 

distribution and magnitude of the forces it must resist 

(Macdonald 2001). Uruguayan structural designer 

Eladio Dieste (1917 – 2000) is quoted in an elegant 

expression of this point: “The resistant virtues of the 

structures that we seek depend on their form; it is 

through their form that they are stable, not because of 

an awkward accumulation of material. There is 

nothing more noble and elegant from an intellectual 

viewpoint than this: to resist through form” (Zalewski 

et al. 1998). 

Today, with advances in a broad range of 

technologies, it is possible to design, analyze, and 

build forms regardless of their structural performance 

(Addis 1994). In fact, there is a recognized ingenuity 
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in meeting the challenge of making a structurally 

poor forms work in spite of their inefficiencies 

(Macdonald 2001). However, this does not mean that 

this is the best way forward. This paper argues for 

and presents an alternate paradigm in which 

structural considerations are integrated into the 

form-making phase of the design process, conceptual 

design. 

Existing Computational Design Tools 

Today’s architecture and engineering practices make 

widespread use of computational tools throughout the 

design process, and currently available tools both 

reflect and enforce existing design paradigms (Hsu 

and Liu 2000; Wang et al. 2002). 

 

Geometry-based Tools for Architects 

Architecture tools, starting with Computer-Aided 

Drafting programs in the 1980s, allow users to 

thoroughly document, and more recently generate, 

both conceptual and detailed designs. An increasing 

interest in complex geometry has led to powerful 3D 

modeling software which, coupled with scripting 

capabilities, enables the development of impressively 

complex forms. 

 

Analysis-based Tools for Engineers 

Computational tools for structural analysis mirror 

architecture tools in their power and capacity for 

complexity, and yet also maintain existing design 

roles. Finite element analysis (or FEA) programs are 

capable of determining stresses, deflections, and 

dynamic behavior for highly complicated geometry 

using very sophisticated techniques. Recent 

developments focus on increased accuracy and speed 

under a range of conditions. However, these tools are 

of little use in conceptual design; they require a 

geometry be provided to be analyzed, and are 

incapable of assisting with geometry generation. 

Again, these tools relegate engineers to the tasks of 

verifying the form and sizing the members, thus 

limiting or eliminating their involvement in 

conceptual design. 

Key Structural Design Tool Features 

The emerging research area of computational 

structural design tools seeks to bridge the gap 

between these existing computational approaches, 

enabling a true integration of structural input during 

conceptual design. This paper identifies two key 

types of features for such tools, feedback and 

guidance. 

 

Feedback Features 

A clear remedy for the lack of performance 

evaluation in geometry-generation tools is to 

integrate structural analysis capabilities into such 

software. It is critical that such analysis be fast, or 

ideally real-time, to allow for an interactive user 

experience. This type of feature shows users how 

design changes will affect structural performance 

according to metrics such as required material 

volume, structural stiffness, or estimated construction 

costs. This has been implemented in a number of 

applications both in research and practice, but is 

limited by the speed of computational structural 

analysis. 

 

Guidance Features 

To shift engineering software from the existing 

analysis and verification focus, tools for structural 

design should include form-guiding capabilities. This 

type of feature enables the software to suggest new 

geometries to the user in order to improve the 

structural performance of a design concept. While the 

field of optimization offers insight into ways to 

achieve this, there has been little progress in 

developing guidance-based tools for conceptual 

design both in research and practice. To truly 

encourage integrated conceptual structural design 

through modern computational tools, it is critical that 

methodologies that achieve this functionality be 

further developed. 

Optimization in Structural Design 

Structural optimization is a promising field with a 

rich history, but has nevertheless yet to make a 

significant impact on structural design in practice. 

This section explains the development of structural 

optimization theory and discusses the reasons for its 

disconnect with design. 

The history of structural optimization can be 

traced back to Galileo Galilei (1564 – 1642), who in 

1638 determined the optimal shape of a cantilevered 

beam subjected to a point load at its free end 

(Timoshenko 1953; Heyman 1998). By finding the 

parabolic profile, as illustrated in Fig. 2, Galileo 

showed that mathematics can be used to find forms 

that use material as efficiently as possible to support 

a given load. For many years since, this has been the 

goal of structural optimization. 

 

 

Figure 2. Drawings from Galileo’s Dialogues 

Concerning Two New Sciences (1638), showing in (a) 

an incorrect linearly varying solution for the optimal 

shape of a cantilevered constant-width beam 

supporting a point load at its tip, along with (b), the 

correct parabolically varying solution (Timoshenko 

1953).  
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Since Galileo, scholars have solved a steady 

stream of increasingly complex structural 

optimization problems (Wasiutynski and Brandt 

1963). One of the most well-known contributions 

comes from Anthony G. M. Michell’s work on 

another cantilever problem almost three hundred 

years after Galileo’s original work. Michell showed 

how to find an optimal truss solution for the 

point-loaded cantilever problem (and a few others) in 

his seminal 1904 paper, “The Limits of Economy of 

Material in Frame-structures.” Like Galileo, Michell 

was looking for minimal-material analytical solutions 

for key canonical problems, rather than offering a 

general approach for optimization of any structure. 

(Timoshenko 1953; Heyman 1998). 

A more general approach that resembles 

methods in use today was developed in the 1960s, 

with critical work by Schmit (1960). A cohesive 

overview of work since is given by Spillers and 

MacBain (2009). In contrast with the analytical 

methods of scholars like Galileo and Michell, the 

new numerical methods attempted to find the 

optimum by iterating through potential solutions in a 

systematic way (Kirsch 1981). While iterative 

approaches were practically impossible in the days of 

manual calculation, the newly developed computers 

brought rapid calculations for large problems to 

reality. 

 

Figure 3. 25-bar trussed tower with member cross 

sectional diameters and wall thicknesses chosen by 

an optimization algorithm (Fox and Schmidt 1966).  

Importantly, structural optimization researchers 

in the 1960s referred to their discipline as structural 

synthesis (Schmit 1981; Vanderplaats 2010), 

revealing the early aspirations of the field and 

evoking ideas of design in its truest sense: creating 

something new. However, the work actually dealt 

with choosing member cross sections for 

predetermined geometries and member 

configurations (Fox and Schmit 1966). For example, 

Fig. 3 shows a three-dimensional truss tower with 25 

elements, whose cross sections were selected using a 

numerical weight minimization algorithm. This type 

of problem is referred to as size optimization. While 

improvements since the 1960s have broadened the 

reach of structural optimization strategies, the general 

disconnect between the goals and reality of structural 

optimization persist still today. In short, although 

structural optimization aims to generate new and 

exciting forms, most applications are limited to rather 

narrow problem spaces. 

An important step forward in structural 

optimization was the development of shape 

optimization, or the determination of overall 

structural form as opposed to element sizes 

(Vanderplaats 1982; Bennett and Botkin 1986; Haftka 

and Grandhi 1986). Most applications of this early 

work were in structural design of components in the 

automotive and aerospace industries, where an 

improved part would be used hundreds or thousands 

of times, yielding extensive savings, although there 

are also examples of shape optimization for trusses, 

sometimes called geometry optimization. Because it 

deals with overall form, shape optimization is more 

relevant to conceptual design than size optimization. 

The third type of structural optimization used 

today is topology optimization, or the optimal 

connective arrangement of elements in a structure, 

developed numerically in the late 1980s (Bendsøe 

and Kikuchi 1988; Rozvany 2001; Rozvany 2007). 

This type of optimization can also be integrated with 

shape optimization and size optimization. 

Specific methods have been developed to 

address each of the three classes of structural 

optimization problems, but in general they share a 

common formulation, described in the following 

subsection. 

 

Optimization Problem Formulation 

Formally, structural optimization is a numerical 

method of finding the best solution according to 

mathematically formulated functional requirements, 

or objectives, while conforming to mathematically 

formulated constraints. The solution is expressed in 

the form of numerical values for a design vector, x, 

which represents a list of design decisions to be made 

– for example, nodal positions, material selections, 

cross sections – called design variables.  

The objective function, f(x), is often a 

calculation of the weight or volume of the structure, 

such that a minimal-weight structure can be found. 

However, this function can also consider stiffness, 

strain energy, deflection, or other quantitative goals, 

structural or otherwise. The constraints, g(x) ≤ 0 and 

h(x) = 0, and the variable bounds, xi,lb and xi,ub, 

restrict the solutions according to design or 

behavioral requirements. More specifically, design 

constraints can represent geometric or spatial 

requirements, constructability or fabrication 

limitations, or other functional considerations. 

Behavioral constraints set limitations on structural 
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behavior, and include restrictions on performance 

metrics like internal stresses, deflections, or buckling 

capacity (Kirsch 1981). 

Together, the design vector, constraints, 

variable bounds, and objective function define a 

design space, or solution space, for a given problem. 

The dimension of this space is given as one more 

than the number of design variables, to represent the 

space of possible design vector values and their 

resulting objective, or performance, values. Structural 

design problems often have design spaces that are 

large and complex, although the exact nature of the 

design space depends on the specifics of the problem. 

 

Limitations of Optimization in Design 

Despite the rich academic history of structural 

optimization, it has had relatively little impact on 

structural engineering in practice. Fundamentally, this 

can be attributed to an inherent difference in goals 

between optimization and the design of buildings. 

While optimization is necessarily a convergent 

process, or one in which an iterative and systematic 

algorithm converges upon a single solution, design is 

decidedly divergent. In design, it is recognized that a 

variety of significantly different yet suitable solutions 

can be found from a single starting point. 

Moreover, the exercise of mathematically 

formulating objectives and constraints is difficult or 

impossible in the design of buildings. Many goals 

and requirements are qualitative, or even subjective, 

such as visual impact, spatial experience, contextual 

fit, and overall architectural value. Since most 

structural design cannot occur in the absence of 

architectural goals, this presents a significant 

challenge. 

In addition, the design process for buildings is 

often one of discovery: designers do not know all of 

their objectives and constraints at the beginning of 

the process, but develop them as they explore design 

possibilities. The designer’s interaction with the 

process of evaluation and iteration is key. In contrast, 

standard optimization is a relatively rigid and 

automated process in which goals and requirements 

must be enumerated completely at the start. Unlike 

the human design process, optimization on its own 

cannot handle unformulated objectives and 

constraints. 

Finally, most structural designers lack intensive 

training in optimization, and there are few tools or 

approaches available that make optimization 

accessible to non-experts.  Furthermore, 

optimization tools that do exist are often text-based or 

severely limited in their graphical displays, and often 

rely on piecing several pieces of software together. 

Human designers are necessarily highly visual, and 

can process and evaluate information much more 

quickly and fully when it is presented graphically. 

Therefore, in order to be useful for designers in 

practice, tools that use optimization should be easy to 

use, integrated, and strongly graphical. 

Interactive Design Space Exploration 

Given the issues with standard optimization in 

conceptual structural design, it is necessary to look 

beyond the established approaches to find ways to 

bring computational design guidance to conceptual 

design tools. 

Interactive optimization addresses this issue in 

a simple but compelling way: the designer is allowed 

to interact with the computer algorithm in deciding 

which designs to pursue in the iterative optimization 

process. The exact mechanics of the interaction 

depend on the specific algorithm chosen. In general, 

the interactive element allows the user to only 

partially formulate the design problem in a 

quantitative way, and to use unformulated or newly 

discovered objectives and constraints to make design 

selections. 

 

Interactive Evolutionary Algorithms 

Evolutionary algorithms are a general class of 

optimization strategies that use the principles of 

Darwinian natural selection to grow and evolve 

populations of designs. They have the advantages of 

being robust and well-suited to complicated 

engineering problems. Because they incorporate 

randomness, they avoid getting stuck in local optima, 

and can effectively hop around the design space in 

search of better solutions. 

Furthermore, because they work with 

populations of candidate designs, evolutionary 

algorithms are especially useful in promoting design 

diversity. Unlike algorithms that focus on improving 

singular solutions, these algorithms improve a group 

of alternative options as they iterate. The general 

procedure is to randomly initialize a first generation, 

evaluate the fitness of each member of the generation, 

identify the top performers, and use those to create a 

subsequent generation by combining and mutating 

them. In standard evolutionary algorithms, the 

process runs automatically until preset criteria are 

reached, and a single solution is presented as the 

optimum. However, it is also possible to take better 

advantage of the design diversity created by this 

approach by incorporating human interaction. 

On their own, evolutionary algorithms are 

subject to the same criticisms as other standard 

optimization approaches, as detailed previously. 

However, because of their population-based approach 

and selection mechanics, evolutionary algorithms 

lend themselves particularly well to human 

interaction. Interactive evolutionary algorithms are a 

subclass of optimization algorithms that use 

principles of evolution combined with human input to 

drive design space exploration. The general iterative 
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process for this type of algorithm is illustrated in the 

diagram in Fig. 4. The cycle differs from standard 

evolutionary algorithms at the design selection step. 

The algorithm identifies top performers, but solicits 

input from the user to make final choices about which 

designs to proceed with to form the subsequent 

generation. This key difference allows the designer to 

adjust the optimization process based on 

unformulated goals, such as visual impact or 

constructability requirements. Furthermore, the user 

may adapt goals across generations, based on newly 

realized design criteria discovered in the explorative 

process. 

 

 

Figure 4. General diagram of an interactive 

evolutionary algorithm, including the interactive step 

highlighted in blue.  

The first interactive evolutionary algorithms 

were developed in Sims (1992) for the purpose of 

finding visually interesting cellular automata. In this 

early case, selection was entirely based on user 

preferences, rather than on a combination of user 

preferences with calculated objective functions. The 

literature includes many subsequent examples of this 

strict type of interactive evolutionary algorithm, 

including for the design of web pages (Oliver et al., 

2002) and coffee blends (Herdy 1997). 

Contributions from Parmee and collaborators 

led to some of the first interactive evolutionary 

algorithms that used both computation and human 

input to drive selection (Parmee 1997; Parmee and 

Bonham 2000; Parmee 2001). Unlike the earlier 

examples, which focused on design problems with 

highly subjective performance metrics, this work is in 

the realm of engineering, which has both quantitative 

and qualitative goals. This work laid the foundations 

for further research in the applications of interactive 

evolutionary computation to structural design. 

More recently, some progress has been made in 

applying interactive evolutionary computation 

specifically to the realm of structural design. Most 

notably, von Buelow has proposed an interactive 

genetic design tool for creative exploration of design 

spaces, including for the design of trusses (2008) and 

folded plate structures (2011). 

 

Specific Needs 

Existing work suggests specific challenges to be 

addressed by a new interactive evolutionary 

framework. First, existing approaches implement 

interactivity in limited ways. Interactive features 

should be expanded to allow more incorporation of 

requirements and criteria from the designer. These 

features can also help the designer direct exploration 

of the design space in a more precise way, further 

improving the effectiveness of an interactive 

evolutionary approach. 

Additionally, existing research treats interactive 

evolutionary algorithms as a stand-alone approach 

without considering the broader user design 

experience. There is a need to incorporate general 

problem setup strategies and design refinement 

functionalities into an expanded approach, along with 

the evolutionary approach itself. 

The framework presented in this paper is a 

novel holistic approach that generalizes the use of 

interactive evolutionary algorithms in conceptual 

structural design, and also addresses these specific 

needs. 

Interactive Evolutionary Framework 

This section introduces a novel framework that 

adapts a generalized interactive evolutionary 

algorithm for conceptual structural design, as well as 

its implementation as a software tool. Detailed 

descriptions of specific original features of the 

framework are discussed more fully in subsequent 

sections. 

 

Framework and Software Architecture 

Existing work suggests specific challenges to be 

addressed by a new interactive evolutionary 

framework. First, existing approaches implement 

interactivity in limited ways. Interactive features 

should be expanded to allow more incorporation of 

requirements and criteria from the designer. These 

features can also help the designer direct exploration 

of the design space in a more precise way, further 

improving the effectiveness of an interactive 

evolutionary approach. 

The software implementation of this framework 

reflects its generalized nature. The program is written 

in C#/.NET (Microsoft 2012), an object-oriented 

programming language, and is designed to be 

modular and extensible. There are four general types 

of backend classes: variables, design models, 

structural analysis engines, and the interactive 

evolutionary algorithm population generator. The 

population generator connects with a graphical user 

interface to allow input from the user. The interaction 

of these parts is illustrated in Fig. 5. 
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Figure 5. Software architecture diagram for the 

interactive evolutionary framework, illustrating main 

class types and interactions.  

This diagram shows the versatile nature of the 

framework. Variables, design models, and analysis 

engines are all designed using interfaces, meaning 

that each can be implemented as a variety of types. 

For example, variable types can be horizontal and 

vertical nodal positions, but they could also be 

material properties, joint fixities, member topologies, 

or other design decisions. Design models can be truss 

structures, again as introduced previously, but they 

could also be frame structures, continuous solid 

structures, or other structural types. A design model 

type must have one or more analysis engine type that 

can apply to it. For example, truss structures are 

associated with a truss analysis engine, but could also 

be analyzed by more detailed analysis engine types. 

Examples of variable types, design model types, and 

analysis engine types are presented in the following 

subsections. 

The population generator works with a 

particular design model type and a particular 

associated analysis engine type. Using the design 

model and its variables, it creates a generation 

through crossover and mutation. Using the analysis 

engine, it applies a fitness score to each candidate 

design. It then presents the best designs to the user 

through the graphical user interface, which also 

allows the user to make selections. These selections 

are sent back to the population generator, which 

produces a new generation. 

 

Variables and Design Models 

As discussed in the previous subsection, the 

interactive evolutionary framework supports multiple 

variable types and design model types. To illustrate 

how these classes work, the example of a truss design 

model with variable nodal positions will be used. Fig. 

6 shows a seven-bar truss with three design variables. 

The truss model is defined by its nodes and members. 

Nodes are defined by degrees of freedom, which have 

coordinates, loads, and supports. In this 

two-dimensional case, nodes have two degrees of 

freedom. Members are defined by their start and end 

nodes and their material properties. Like all design 

model types, the truss model also has a vector of 

variables. This is the model’s design vector, or 

parametric representation. 

 

 

Figure 6. A planar seven-bar truss design problem 

with three design variables: the horizontal and 

vertical positions of the lower left node (n2), and the 

vertical position of the central node (n4). This truss is 

simply supported, has a central point load, and is 

bilaterally symmetrical.  

 

In this type of design problem, the coordinate 

of each degree of freedom can be a variable. Any 

variable type must have defined upper and lower 

bounds. In this case, the upper and lower bounds are 

the allowable range for the coordinate, illustrated in 

Fig. 6 with the dashed rectangle for node 2 and line 

for node 4. 

Additionally, any variable type must implement 

analogues of the biological concepts of crossover and 

mutation. Conceptually, crossover combines encoded 

information from more than one parent to create 

offspring that have traits from each of them. Mutation 

then randomly perturbs the newly formed offspring in 

order to encourage diversity.  For this example, the 

implementations of mutation and crossover are given 

in Eqs. (1-6), and apply to continuous variables in 

general beyond the degree of freedom coordinate. 

Crossover is accomplished through a weighted 

average of seed variable values with random weights. 

Mutation updates a variable value with a random 

variable from a normal distribution with a standard 

deviation related to the variable’s allowable range 

and set mutation rate.  For discrete or integer 

variables, these same approaches can be used with 

minor modifications. 
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Crossover: 𝑥crossed =  
∑ 𝑥𝑖𝑤𝑖

𝑛
𝑖 = 1

∑ 𝑤𝑖
𝑛
𝑖 = 1

      (1) 

Mutation: 𝜇 = 𝑥crossed        (2) 

𝜎 =
|𝑥ub−𝑥lb|

2
𝑟mutation    (3) 

Normal distribution: 𝑓(𝑥;  𝜇, 𝜎2)  (4) 

𝑥rand =  rand(𝑓)      (5) 

𝑥mutated = min(max(𝑥rand, 𝑥lb), 𝑥ub)  (6) 

 

The framework also supports parametric 

relationships between variables and non-variables. 

For example, the truss design model presented here 

allows for mirror and offset relationships between 

degree of freedom coordinates. The former is 

illustrated in the problem shown in Fig. 6, which uses 

bilateral symmetry to define the position of the lower 

right node (n3) based on the position of the lower left 

node (n2). 

 

Analysis Engines 

Design model types must be associated with at least 

one analysis engine type, although the framework 

supports the use of multiple analysis engines. Any 

analysis engine must determine a quantitative fitness 

score for a given design model, based on structural 

criteria. For example, in the case of the truss model, a 

truss analysis engine can find the required volume of 

a structure with a given geometry, loading, and 

support conditions. The engine calculates this metric 

as follows: compute the forces in each member using 

the direct stiffness method, assign required cross 

sectional areas to each member based on allowable 

stress and buckling considerations, and find the sum 

of the area lengths times their required areas. 

The code for this truss analysis engine was 

written from scratch, using the open-source 

Math.NET numerical analysis library for matrix 

operations (Math.NET Project 2012). However, 

analysis engines could also make use of commercial 

structural analysis codes. An important note is that 

for statically indeterminate structures, this particular 

process is affected by initial member sizes used to 

compute forces. In this case, optimal member sizing 

can be computed through iteration, or an approximate 

result found through initial equal member sizing can 

be accepted.  

 

Population Generator 

The population generator in this framework 

implements a simple and flexible interactive 

evolutionary algorithm that can be easily controlled 

by the user and adapted to a wide range of variable, 

design model, and analysis engine types. As 

explained previously, the interactive evolutionary 

algorithm is an iterative approach that can be 

repeated until the user is satisfied.  

The first step of the algorithm is to generate a 

random population of a preset number of candidate 

designs. For the first generation, this is based on 

random perturbations from an initial structure defined 

by the user. Specifically, for each candidate design in 

the new generation, each design variable is mutated 

from initial values from the user-defined initial 

structure. Mutation is carried out in the manner 

previously discussed, and illustrated in Eqs. (2-6) for 

the example of continuous variables. 

Next, the algorithm uses the analysis engine to 

assign a fitness score to each candidate design. The 

algorithm then sorts the designs according to this 

score and presents a top-performing subset of designs 

to the user through the graphical user interface. The 

user is then able to visually evaluate the designs and 

choose those that best meet the qualitative or 

otherwise unformulated goals for the design process. 

The designs that the user chooses are used as seeds 

for creating the next generation in the iterative 

process. 

The seeds are used to form a new generation 

using the previously discussed crossover and 

mutation functionalities. The newly formed 

generation of new candidate designs is then evaluated, 

sorted, and presented again, and this process can 

continue as long as the user wishes. There are also 

several ways for the user to interrupt the process. If 

the user does not like any of the presented designs, or 

wishes to make changes to designs previously 

selected, the user can return to a previous generation, 

adjust selections, and rerun the algorithm from that 

point. Also, the user can choose to select no designs, 

and the algorithm will reset and start with the 

previously defined initial structure once again.  

User Experience and Interface 

The framework described above has been 

implemented in an interactive proof-of-concept 

design tool called structureFIT (Mueller 2013). The 

following sections describe the graphical user 

interface and general user experience. 

 

Graphical User Interface (GUI) 

The graphical user interface (GUI) enables the 

interactive step of the interactive evolutionary 

algorithm by showing the user top-performing 

designs graphically and allowing the user to make 

selections. The GUI is implemented using Silverlight, 

a platform-agnostic technology that supports 

interactive user applications that run in a web 

browser (Microsoft 2012). There are several 

advantages to this approach, in comparison with 

traditional desktop applications or integration into 
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existing software. First, the program is highly 

accessible: anyone with a web browser can use it, 

regardless of operating system, and there is no need 

to download or install it. Second, there is no need for 

the user to own other commercial software, such as 

Rhino or AutoCAD, to run the program, and the 

program is not tied to software trends, which tend to 

change relatively quickly in the architectural 

computation realm. Finally, the web-based interface 

lends itself naturally to analysis calculations on 

remote servers. While all calculations are currently 

executed on the client-side, or on the user’s computer, 

future use of server-side calculations through remote 

resources or cloud computing could significantly 

improve performance. 

 

 

Figure 7. Screenshot of the web-based graphical user 

interface, showing the evolution of solutions for the 

design problem presented in Fig. 6.  

 

Figure 8. A closer view of several candidate designs 

created by the population generator and presented to 

the user, with scores normalized by a base design’s 

score shown underneath each.  

A screenshot of the GUI is shown in Fig. 7. It is 

designed to be simple and user-friendly, while still 

allowing for powerful user control. The main feature 

of the interface is the matrix of designs, shown in 

numbered rows. Each row represents a generation 

created by the population generator, and the designs 

shown are the top ten performers. The number under 

each design corresponds to its score, normalized by 

the score of a base design, which is shown, along 

with the initial design, in the upper left-hand corner 

of the interface. Designs with scores less than 1.00 

perform better than the base design, and those with 

scores higher than 1.00 perform worse. A closer view 

of generated designs and their scores is shown in Fig. 

8. After each generation is produced, the user is able 

to select zero, one, or more designs by clicking on 

them, and selected designs are indicated with a gray 

square. The user then clicks the main “generate” 

button to produce a new generation. 

The user can return to a previous generation by 

clicking the “<” button next to the corresponding row. 

This will erase the designs generated since, and the 

user can change the selected designs and rerun the 

computation. The user can also adjust the mutation 

rate and population size for each generation, and can 

choose to turn on a hybrid approach that 

automatically computes several generations in a row. 

These features are discussed in more detail in 

subsequent sections.  

 

Expanded User Experience 

In addition to the interactive evolutionary design 

experience, this framework includes original 

functionality that can be used before and after. Before 

evolutionary design exploration, the user can set up 

the design problem by drawing in a graphical and 

intuitive user interface. This makes the framework 

general beyond specific examples. After the 

evolutionary design evaluation, the user can refine an 

evolved design using real-time performance feedback. 

These additional features help bring this framework 

beyond an algorithm and toward an approach usable 

for real design problems. 

The design setup mode allows the user to 

define a design problem by building a structural 

model and identifying variables. The user can draw a 

structure by clicking and dragging to create nodes 

and members on a canvas, or by modifying entries in 

an adjacent spreadsheet. The user can then assign 

loads and supports to defined notes, and define 

variables, including upper and lower bounds. Finally, 

the user can define planes of symmetry and 

parametric relationships, including mirror and offset 

relations. The information entered by the user is 

updated dynamically in the graphical view of the 

structural model. This functionality is illustrated in 

Fig. 9. 

 

 

Figure 9. Screenshot of the model setup mode, in 

which the user can input a design problem, specified 

by structural geometry, loads, materials, boundary 

conditions, and variable definitions. 
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The user may also choose to open one of a 

range of preset design examples that can be run 

directly, or modified to adapt to new problems. 

Additionally, the user can choose to save a custom 

setup structure that can be opened again later in the 

design session. Once the setup structure has been 

finalized, the user can click the button in the upper 

left of the screen to set it as the initial design for the 

interactive evolutionary mode. If the structure is not 

stable, or contains no loads or variable definitions, 

the program will identify these issues for the user to 

correct. 

This setup mode is important because it makes 

the interactive evolutionary framework both highly 

flexible and easy to use. The framework is not tied to 

any particular example or case study, and can be used 

by designers for real design problems. Additionally, 

the GUI for design input is powerful and user friendly, 

so that designers can define problems quickly and 

move on to exploring solutions in the interactive 

evolutionary mode. 

 

 

Figure 10. Screenshot of the design refinement mode, 

in which the user can adjust designs found in the 

interactive evolutionary exploration with real-time 

performance feedback in terms of the overall score 

and individual member sizing. The members are 

drawn with required thicknesses shown to scale, with 

blue indicating tension and red compression. 

Once the user has found an interesting design, 

it can be studied and refined further in the design 

refinement mode. This mode allows the user to 

graphically adjust variable settings for a selected 

design to fine-tune its appearance, while also 

receiving real-time feedback on the performance 

implications of the adjustments. In the case of nodal 

coordinate variables, the user is able to adjust the 

nodal positions by clicking and dragging, and note 

the change in the overall design score. The program 

also instantly updates the required thickness of 

individual members, shown graphically on the 

members themselves and numerically in a 

spreadsheet. The user is able to save particular 

designs found in this design refinement mode and 

return to them for comparison. Once an attractive 

solution is found, the user can export it for use in 

more advanced modeling and analysis software. A 

screenshot of this design mode is shown in Fig. 10. 

Like the model setup mode, the design 

refinement mode adds crucial functionality to the 

interactive evolutionary framework. By combining a 

guidance-based approach with a feedback-based 

post-processing step, the framework is able to expand 

design freedom for users. 

Conclusions 

This paper has presented a general framework for 

using interactive evolutionary optimization in 

conceptual structural design. This work is important 

because it helps enable a guided exploration of 

structural design spaces, while still allowing for 

creativity and freedom, addressing the issues found in 

standard optimization previously identified.   

This framework builds upon existing work in 

interactive evolutionary algorithms and in structural 

design tools, addressing specific issues that remain 

unresolved in previous literature. The specific 

contributions include the generalized approach for 

interactive structural design as well as its graphical 

and interactive implementation in the form of the 

structureFIT design tool. 

 

Applications 

The framework and tool introduced here could 

significantly improve conceptual design exercises in 

practice, as a way to generate and compare a wide 

range of design ideas quickly and easily. An architect 

with basic structural knowledge could use the tool 

alone or as a supplement to working with a creative 

structural engineer early in the design process. A 

structural designer could also use the tool to develop 

innovative structural concepts to discuss with the 

architect for further development. In a more 

integrated approach, a team of architects and 

engineers could use the tool together during 

conceptual design, collaboratively developing design 

alternatives that perform well structurally and achieve 

architectural design goals. Finally, the tool could be 

useful in facilitating discussions between designers 

and clients, helping clients understand tradeoffs 

between options and cost implications of design ideas 

at the earliest stages. 

Possible applications in the classroom mirror 

those in practice: architecture students could use a 

tool implementing this approach for exploring early 

design options for studio projects, and engineering 

students could use such a tool for engineering design 

projects. However, the design tool also has additional 

didactic potential for developing intuition for 

structural behavior in architecture and engineering 

students, a very important and increasingly neglected 
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aspect of education in both disciplines. For 

engineering students, this tool could also offer a way 

to encourage design creativity, another significant but 

overlooked area. Furthermore, a tool used by students 

from both disciplines together would foster 

collaboration and improve students’ 

cross-disciplinary communication skills, which are 

much needed in practice. 

 

 

 
Figure 11. Robert Maillart’s 1924 design for a shed 

roof in Chiasso, compared with designs discovered 

using the computational approach presented in this 

paper.  

In addition to discovering design possibilities 

for new projects, this approach could also be useful in 

studying existing work within the context of a formal 

design space. Most architectural history research does 

not include detailed analyses on structural 

performance, which can be of value in evaluating 

success and identifying lessons to move forward with. 

The design space strategies used in this approach 

allow researchers to consider a historical work as a 

point in a space of alternatives of varying structural 

performance and formal attributes, potentially 

gaining insights on design decisions and process. For 

example, Robert Maillart’s concrete shed roof in 

Chiasso, Switzerland, designed in 1924, is shown in 

Fig. 11, along with related design alternatives 

explored using the approach presented in this paper. 

It is evident that there is a family of solutions of 

varying performance, some of which share more in 

common with Maillart’s design, which achieves a 

constant force in the gable elements, and some less. 

Such a study could provide a new context through 

which designs could be analyzed, understood, and 

revisited in the future. 
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