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Abstract

This thesis explores the use of approximation algorithsesnetimes called surrogate modelling,

in the earlystagedesign of structures. The use of approximation models to evaluate design
performance scores rapidly could lead to a moral@pth exploration of a design space and its
trade-offs and also aid in reducing the computation time of optimization algorithmsn&thine
learningbasedapproximation models have been examined, chosen so that they span a wide
range of different characteristics. A complete framework from the parametrization of a design
space and sampling, to the construction of the approximation ei®dnd their assessment and
comparison has been developed. New methodologies and metrics to evaluate model
performance and understand their prediction error are introduced. The concepts examined are
extensively applied to case studies of mualtijectivedesign problems of architectural and civil
structures. The contribution of this research lies in the cohesive and broad framework for
approximationvia surrogate modelling with new novel metrics and approaches that can assist
designers in the conception afore efficient, functional as well as diverse structures.
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1. Introduction

The engineering design process is a demanding endeavor. It is a mix of analytical tools with human
intuition. The design of ne structures lies on the same category. It is complex; it involves multiple
objectives and numerous parameters. The work on this thesigributes in this area and has the goal to
empower designers to awve more efficient structures, by usirgtype ofapproximation technique
calledsurrogate modelling.

1.1 Structural optimization

To the extent of the feasible and the realistic, optimization is strived for in engineering desstructural
engineering,specifically optimization is a process thatviolves many physical constraints, such as
construction, material production and transportation, cost, safety and many more. At the same time, in
the discipline of architecturemore abstractconsiderations areprioritized in design; functionality,
aesthetts and human psychology just to name a few. Both disciplines are combined in practicey shar
the same goalto produce a single result.

Unlike other engineering disciplines, the optimization objective goals and constraints are not always easily
guantified and expressed in equations, but rather require human intuition and initiadiveaterialize.

For this reason, structural optimizatidrasyet to reach its full potential. With modern computers and
tools available, this potential iseginning to be re@ed. There ara few examples where it has been
successfully applietb buildings,such asn projects by Skidmore Owings & Merrill (SOM], shown in
Figurel. To illustrate the breadth of designs for braciEame systems, another one by Neil M. Denari
Architects is shown ifrigure2 (High Line 23, New York CJg]). While this design is not structurally
optimized, its architectural success is closely linked to its structural system and geometry. So, in the
structural designoptimization, there needs to be a balance betwequoantitative and qualitative
objectives.

Y e . o
|
|
— — | .
2 P |
|
|
— — — i L
P > <
I |
|
—| — |
P P |
|
|
— — > i >
P >
F |
|
—_ — > | >
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|

Figurel: Optimized brace frame system, SOM (Image frddaj)
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Figure2: Bracal frame system, Denari Architects (Image fri&})

On the one hand is the quantitative aspect of optimization. Structural evaluation simulations as well as
energy simulations, which compute the energy consumed by a buildoften require significant
computational power, increasing with the complexity and size of the project. Thus, optimization
algorithms can usually require substantial execution tife.put thisin context, for energy simulations
included in the case studies, the time required for one sample evaluation was approximately @5isbc
impedes a fredlowing design processThis fact slows down the design proce€s the other hangd
because of thequalitative nature of this type of design with the ha@lquantify considerations as
described above, many iterations are required and the result is never likely to come up from a single
optimization run.In practice, the combination of slow simulationdaproblem formulation challenges
means that optimization is rarely used the design of architectural and civil structurds fact, even
guantitatively comparing several design alternatives can be too -tioresuming, resulting in poor
exploration of thedesign space anlikely a poorly performing design

1.2 Need for computational speed

The explorationof the design problem and various optimal dodns should ideally happen in real time

so that the designer is more productive. Research has shownr#ipad response time can result in

significant productivity and economic gaifgi® & L Y LINRI@Bprodustiyitik s @ekhaps the most
AAIYATFAOLYG o0SySTAG (2 0S5 [F orhel uppérStReshdliNdrycompitebJA R NB
response time for optimal productivity has been estimated at 40@ms$ 5 commonly referred to as the

Doherty threshold3]. This threshold was originally developed in the 1980s for system response of routine

tasks, like typing. Today, however, software users expect similarly rapid response for any interactions with

the computer, even those that require expensive calculations like performance simulation. Immediate
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response from the computer can benefit not just rote productivity, but also creative thinkimgconcept
offowA da dzaSR Ay LlAEOK2829Re (22 RBRADRNAGEI MD2WVALEY ¢ T &
immersed and productive. It wathoroughly studiedby M. Csikszentmihalyj4] and among the

components for someone to experieniew> G A YYSRALF S FTSSRolO1¢é Aa fAaaas

The first way tdmplementthed A YYSRA I (S T & SdtputeOrgsponsgsbyFik@asing the
availablecomputational power. This can be achieved by either increasing the processing power of a
computer or by harnessing parallel and distributed computing capabililibs. other way is to use
different or mproved algorithmsThis thesis focuses on the second approach, investigating algorithms
that improve computational speed for desigmiented simulation through approximation.

1.3 Surrogate modelling

Among possible approximation algorithms, this thesissiders surrogate modelling algorithms, a class
of machine learning algorithms, and their use in making computation faster and allowing for more
productive exploration and optimization in the design of buildings.

Machine learnings about creating modelabout the physical world based only on available datse
data are either gathered though physical experiments and processes, or by congenterated samples.
Those samples are then fit to an approximation mathematical model, which can then be ussly dise
the generating means of new representative data samptesurrogate modelling specifically, the data is
collected from simulations run on the computer.

Similar techniques are being ussdccessfullyn many other engineering disciplines, but haxa been
studied and appliecextensivelyto the architectural andstructural engineering fields. This research
investigates these techniques and evaluates them on various related case sfulies. is given ithe
dewelopment ofa holistic framework thais generalizable

v

Figuezd al Y& AdzZNNR3IAFGSEa Yire 0SS O2yEAaidsSyid sAGK (K

Figure3 displays a core concept in surrogate modelling. The circles represent the available data, with
many different moels being able to fit them. The art in surrogate modelling is to choose the one that will
also fit new data well.
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1.4 Research question

This thesis considers two key questions:
Issurrogate modelling viable methodlogyto use in this field?

The main fous of this thesis is to examine the usesofrogate nodelling in the design of architectural
and civil structures as a method to rapidly explore the design space and obtain more efficient solutions.
It applies it in case study problems and tests its @ppility and effectiveness.

How robust isurrogate modelling

Questions of how good an approximation method is are addressed. Also considered are matters of how
accurate a model is and how its error value and variability can be estimated. Methodssfputhbse are
proposed and applied.

1.5 Organization of thesis

First a literature review of the existing research in surrogate modelling, its application in structural
engineering problems, model types and error assessment methods is outlined in Cha@teaipter 3 is

an overview of the main features of the methodology framework used, including assumptions and
descriptions of the models used. Sampling and outlier removal techniques are also disCisxater 4

is dedicated to explaining the error asse®ent and visualization methods used throughout the rest of the
thesis. Chapter 5 introduces the proposed method for robust model comparison, whose use is then
illustrated through the case studies in Chapters 6 and 7. Specifically, Chapter 6 introducasetistudy
problems, the parameters examined and the analysis assumptions, while Chapter 7 presents all the
numerical results obtained for comparing model performances and assessing them individually for all the
case study problemsThe original contribubns, findings and future considerations are summarized in
Chapter 8. Finally, in the Appendix, a sample of the outputs of the developed MATLAB framework is
presented for one case study (Airport terminal) and for one performance score approximation (Energy
Overall).
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2. Background

To avoid a computationally expensive simulation, one approach is to construct @ghyedel that is

simpler andincludes more assumptions than the originghis process is very difficult to automate and
generalize and requirestagh level of expertise and experience in the respective field. A more general
approach is to substitute the analydéicsimulation with an approximate model (surrogate) that is
constructed based purely on data. This approach is referred to asddi&enor blackbox simulation. The

reason is that the constructed approximation model is invariant to the inner details of the actual
aAYdzZ FGA2Y YR Fylftearad ¢KS Y2RSt KlFLa 2yfteée aasSSsSy
process thus the name bldebox. This thesis addresses dadaven surrogate modelling.

The two main area® whichsurrogate modelling can be appliede for optimization andiesign space
exploration.Specificallyan approximation (surrogate) model can be constructed as the mailuation
function for an optimization routine or just in order to explore a certain design space in its entirety, better
understand variable tradeffs and performance sensitivity. For optimization, ibfien used when there

are more than one optimizain objectives, thus callechulti-objective optimization (MOO), and the
computational cost of computing them is significant.

2.1 Surrogate modelling on structural designs

Several years ago, when the computational power was significastghian that of today,one available

today, scientists started to explore the possibility of adapting approximation model techniques in
intensive engineering problems. One of the first attempts of this kind in the field of structural engineering
by Schmit and Miurgs] in a NASA report in 1976. A review of the application of approximation methods

in structural engineering was published by Bartheleang Haftkain 1993[7]. The methods explored in

this review paper are response surface methodology (RSM) as well as neural networks (NN). It was
mentioned that more methods willreerge and the practice is going to expahdfact, today, although

the computational power has increased exponentially from twenty years ago, the engineering problems
that designers face have also increased dramatically in scale and therefore surroghimychas been
studied and applied extensively.

Hajela and Berke wrote a paper in 1982solely dedicated to an overview of the use of neural networks

in structural engineering problems. They mentioned that this approximation technigue could be useful in
the more rapid evaluation of simulationsich as nordinear structural analysis. Neural networks and
approximation models have still great potential in this field today, whenliv@ar structural analysis is

very frequently performed. Researchers have been using approximation algorithms inrglcéust|
engineering field for various problems such as for the dynamic properties and response evaluation and
optimization of structureq9], for seismic risk assessmed] and for energy MOO simulatiorj&1].

Energy simulations are extensively examined in this thesis, since they are usually extremely expensive
computationally, and at the same time their use and importance in building and infrastructure design is
increasingoday.
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The use of approximation algthms in conceptual architectural/structural design was very interestingly
examined by Swifand Batillin 1991[12]. Specifically, for truss problems, with the variables being the
positions of some nodes of the truss and the objective the structural weight, a design space was sampled
and later approximated using neural networks. A representative figure from this paper can be seen in
Figure4, where the initial base structure and the variable ranges are showagire4a, while the best
designed obtained from the neural network approximation isFagure4b.

Begion C
TLXg8 13 1In X,=7.00 in.
Ts¥sg 13 In Yj-?‘noin
=7 .
1-——10 in. ,llle. ¢ sk /e \B ¢ r \?
6k » 6
6 4/ 8t [Region B
“7 5 10k
. | X,=20.24 in,
xd,‘r4r$3m- Sk 8 Sk Yq-?'cllin
10 inp. e -
All forces All forces
in pounds in pounds
12k
q > 3 12k 2 3
Y Sk ) 12k Y % T 12k
LL-X s  Resiond L- 15K
<K 11 in X,-11.00in.
(a) “35Y 45 in (b) Y,--1.12 in.

Figure4: Tentbar truss (a) design space and (b) best design resulting from NN model (Image from

[12])

A similar approach was followed by Muel[@B], with a severbar truss problem examined being shown

in Figure6a. The variables were again the positions of the nodes and specifically the vertical nodal
positions as shown along with their ranged-igure6a. The design space (with the structural weight as
the objective score) computed analytically, without approximation is shownFigure 6b. The
approximatel design space for different models is showFigure6. Details on the approximation models
used later are preserd in the following section on adel types.
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Figure5: Severbar truss (a) variables and (b) analytically computed design space (Image from
[13])
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Figures: Severbar trussapproximated design spader different parameterglmage from13])

It is also worth mentioning thatusrogate modelling is being usectensivelyin the aerospace industry

The basic principles remain theame across disciplines since the methodology relies solely on data.
Queipo et al[5] have made a thorough overview of the common practices of surrogate modelling. They
also applied those techniques in an MOO problem from the aerospace indéstther comprehensive
survey of blackoox approximation method for use in higltimensional design problems is included in
[14].

There exist attempts of integrating performance evaluatioto iparametric design in architectural and

civil structures. Muelleand Ochsendorf15] considered an evolutionary design space exploration, Shi

and Wand16]examined performanc& NA @Sy RSaA3dy FTNRY |y | NBikatd SO0 Q4
al. [17] studied the integration of energy simulations into eastage building design. All of those
interesting approaches could benefit by the use of surrogate modelling, which is the mairabtatriof

this thesis.

2.2 Model types

Several methods have been developed over the years to approximate data and have been used in
surrogate modelling applicains. Very common ones include polynomial regression (PRGeapdnse
surface methodology @MW)[18], in which a polynomial function is fitted to a dataset using least squares
regressionThis method ks been used in many engineering problgbis

One ofthe most widely used surrogate modelling method in engineering problems is Kriging (KRIG). Since
it was formally established in the form it is used todtH], it has been applied extensive[{], [5], [20]).

Gano et al[21] compared Kriging with"2 order polynomial regressionChungand Alonso[20] also
compared 2¢ order RSM and Kriging for an aerospace case sandly concluded that both models
performed well and are pose indeed a realistic methodolimgyengineering design.

Another very popular model type are artificial neural networks (referred as NN in this thesis). Extensive
research has been performed on this type of modél([8]). Neural networks are greatly customizable
and their parameters and architecture are very problem specific

A special type of neural network is calletial basisfunction network (RBFN) and was introduced by
Broomheadand Lowg?22] in 1988. In this network, the activation function of each neuron is replaced by
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agaussian bell curve function. A special tyJddRBFN imposes the Gaussian radial basis function weights
such that the networks fits the given data with zero error. This is referred t@adial basisfunction

network exact (RBFNE) and its main drawback is the high possibility that the networktwgkmeralize

well on new data. Those two types of models, RBFN and RBFNE, are explained in more detail in Chapter 3
as they are studied more extensively in this thesis.

Radial basis functions can also be ugedit high dimensional surfaces from giventaaThis model type
is called RBR23] and is different from the RBFN model. RBF models can also be referreddasassan
radial basis function modeJS]. Kriging is similato RBF, but it allows more flexibility in the parameters.

Multivariate adaptive regressiorpdines (MARS) is another type of model. This performs a piecewise linear
or cubic multidimensional fit to a certain datagé#]. It can be more flexible and capture more complex
datasets, but requires more time to construct.

Jin et al[25] performed a model comparison foropynomial regression, Kriging, MARS and RBF models.
They used 13 mathematical problems and 1 engineering one to perform the compatisamg.other
references for papers that perfored comparisons between those and other models are also included in
[25]. An important feature outlined in this paper was that it fee major aspects to compare the mels.

Those were accuracy, robustness (ability to make predictions for problems of different sizes and type),
efficiency (computational time to construct model), transparency (ability of the model to provide
information about variable contribution and intaction) and conceptual simplicity. Those issues are
examined in followingections in the present thesis.

Finally, the existing MATLARsed framework SUM{26], implementssupport vector nachines (SVM)

[27] (a model type frequently used falassification), Kriging and neuratwork models, along with the
sampling and has been used in many applications such as RF circuit modelling and aerodynamic modelling
[26].

A framework with NN, &dom Forests (RF) which have not extensively been applied in structural
engineering problems, RBFN, RBFNE, MARS and KRIG models was developed and tested in case study
problems in the current thesis to extend the existing research and available methodologies for structural
design.

There is a lack of extensive model comparison and their application on problems for structural engineering
and building design specificalthis thesis addresseatis need to move beyond existing work

2.3 Error in surrogate models

The most important error required to assess an approximation model is what is called its generalization
error. This is more thoroughly examined in the following sectibout robustness. In the current section,
ways to quantify a mod@ performance on a given set of data are discus3&ftien the actual
performance calculated from the analytic simulation is known for a set of data, and the respective
performance from anaproximation model is calculatethen the error of the predicted versus the actual
performance can be calculated by many different measures. All the following error measures are
computed between the actugtepresented byy) ¢ and predictedrepresented ly h) values.
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One of the most common ones i€, Rvhich refers to the correlation coefficient of the actual with the
predicted values. A value closer to 1 indicabbetter fit. This is extensively discussed in this thesis in
Chapter 4 about error. Other conon measures are the Meaquarederror (MSE) and its root, the Root
Mean Squarederror (RMSE). The Average Absolute Error (AAE) and the Maximum Absolute Error (MAE)
are other options, along with Relative Average Absolute Error (RAAE) and the Relativeri&lisolute

Error (RMAEMAE is generally not correlated witi & AAE and it can indicate whether the model does

not perform well only in a certain region. The same holds true for RMAE, which is not necessarily
correlated with Ror RAAE. However? RRAAE and MSE are usually highly correld®&], which makes

the use of more than one of them somewhat redunda@ano et al[21] used R, AAE and MAE for the
model comparisons they studied, while Jin ef2h] used R, RAAE and RMAE

The above mentioned error metrics are summarized along with their formuldsablel.

Error metric Formula
1 MSE B o 0
€
2 RMSE B o ©
€
B o 1O
3 R
P B o o
4 AAE B %
€
B o 'Os
5 RAAE S ol —
e OY'Y®
6 MAE i Ag Qdao QB Os
I'A v ,,Q" v "Q 'l . ”
. RMAE @o ?4@ g8 o Qs

Tablel: Common surrogate modelling error metr{gs actual, h: predicted value)

Error measures whichrpvide a more direct and comprehensive quantitative model performance metric

are lacking, and some alternative approaches to address this are presented in this thesis. Error measures
0FaSR 2y | Y2RSft Qa LISNF2 NS rOfso fudid. $peSal fdclhisyslals®2 F 1 K &
given to the visualization of the results and it is argued that normalization and visualization can have a
significant impact in understanding error and are problem specific.
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2.4 Robustness surrogate modelling

As mentioned irthe beginning of the previous section, it is crucial for a surrogate modelling application
to have an acceptable generalization error. This refers to an error estimate of the model on new data. In
this context, new data means data samples that have nonbesed at any point in the construction of

the model. One can realize that this is indeed the most important error required since the rapid generation
of accurate new data performance is the main objective of the construction of the surrogate model in the
first place.

To estimate the generalization error, several techniques exist. Those are explained in detail in Queipo et
al.[5] and Viana et a[28]. The simplest one is to split a given dataset in&in andtestdata, construct

the model with thetrain data and then compute the error in thtest data and take this as an estimate of

the generalization error. Another technique is caltedssvalidation(CV), in which the original dataset is
splitinto k parts ad the model is trained with all the parts except one, which is used ags¢eet of the
previous case. The procedure is then repeated until each one of the k sets has serveteasdbe By

taking the mean of theéest set errors, a more robust geraization error estimate is produced. Another
FRGFYGF3S A& GKFG F YSFadz2NBE 2F (0 HokexamPlgtdeBtaiDadid O NR |
deviation of the computed test set errors. If this procedure is repeated the same number of tiasethe
number of samples in the original dataset, which means that only a single sample is used every time as
the test set, then this measure is called PRESS and the methoddeavaut cross validatiorf28]. The

last method to obtain a robust generalization error measurement is through Bootstraphpdegrding to

the known definition of the bootstrap (sample with replacement), a certain number of bootstrap samples
(datasets) are created dsaining andtest sets. Then the error estimate and its variability calculation
procedure is similar to the CV method. For the Bootstrapping method to produce accurate results, a large
number of subsamples is usually need2d].

This thesis attempts a combination of the aforementioned techniques frequently used in the surrogate
modelling context with the commopractice of machine learning applicationg{n/validation'test set
partition) to obtain a masure of robustness as well as accuracy.

Another way to interpret robustness is to consider it as the capability of the approximation model to
provide accurate fits for different problem3his again can be measured by the variance of accuracy and

error merics. However, the scope offis thesis is to examine the deployment of approximation models

F2NJ OFasS aiddzReé RSaAdy LINRofSYa FyR y2a (2 02YYSyl
its mathematical properties.

Finally, to increase robustss, one could use ensembles of surrogate models in predi&jonhis means

that several models are trained and their results are averaged with a certain scheme to obtain a

prediction. Models of this type are Random Forests (RF), which are studied in this thesiglamedxn
more detail in the next chapter.
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2.5 Unmet needs, open questions

Asdescribed irthe previous sections, the field of surrogate modelling in engineering design is very rich.
However, is use in the design of architectural and civil structlsdisnited compared to other engineering
disciplines. There is a need for a comprehensive study of its use in this area to examine whether they can
be feasible and realistic in practice. The thread of their use in conceptual structural design wakJ@# in

[12] and picked up recentlfd3]. An extension of the study in this field is necessary, since the advantages
that rapid exploration and optimization can have in early stage structural design could be significant.
While many model types have been investigated, few have been applied toroddéms in this field.

There is also a field within a field in error estimation and visualization of approximation models, which
needs to further be explored. Specifically, what other types of error metrics and visualization techniques
can be used in surgate modelling applications are amotige questions this thesis will address. A main
concept that is addressed and pointed out throughout the thesis is that the prediction results of a model
should be visualized instead of just obtaining an error metrige/a

Model robustness considerations are also examined thoroughly, proposing a methodology that is focused
on approximating data by combining ideas from various surrogate modelling/machine learning contexts
and has the goal of broad applicability and sbaiy in architectural and civil structure design
applications.
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3. Methodological famework

This chapter outlines in detail the basic components used throughout this research, the proposed
methodology and the case studies, all thoroughly explained éenftlowing chapters. In general, the
framework developed is based on sampling a design scape in the first place and then constructing and
assessinghe surrogatemodels. For the sampling part, the Rhino software and the Grasshopper plugin
were used. Thegre parametric design tools very broadly used in architectural design. As for the surrogate
modelling part, the framework and all of the analysis was performed in MATLAB. References to the
specific functions and special capabilities of the software areedlan context in the text.

3.1 Surrogate modelling procedure

The basic surrogate modelginprocedure consists of three phasésining, validation and testing. A
separate set of data is needed for each of those phases. During the training phase, lasffitdeto a
specific set of data, the training set. The fitting process refers to the construction of the mathematical
model; the determination of various weighting factors and coefficiehtsthe next phase, the trained
model is used on a differenesof data, the validation set, and its prediction error on this set is computed.
The first two steps of training and validation are repeated several times with different model parameters.
The model that produced the minimum error on the validation sethén choserfor the final phase of
testing. During testing, another dataset, the test set, is used to assess the performance of the model
chosen from the first two steps (minimum validation set error).

The steps are shown samatically inFigure7. Each model type can have multiple parameters which

define it. Those are referred to as nuisance parameters, or simply parameters in the following chapters.
Different nuisance parameters can result in different levels of model fit andracy. Choosing the best

nuisance parameters for a given model type is the goal of the validation phase as described in the previous

LI NF ANI LIK® ¢KS (Sad LKIFaAS Aa FT2N) OSNAFAOLIGAZ2Y 2F
previously used in & process (training or validation). More details can be fourj@7i

Train Val. Test ‘
—Nuisance
Best
[—parameler ®
Model ot

Figure7: Surrogate modelling procedure
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3.2 Modeltypes

The utilization of apprdmation models, referred to as surrogate models or maché#ering algorithms

in different disciplines, aims at prediction. A model is essentially a procedure that aictsutrdata and
outputs a prediction of a physical quantity. Previously computed or measured values of the physical
guantity at hand, along with the corresponding input variables, are used to create/train the model, which
can afterwards be used to make idgpredictions on new data. There are numerous different surrogate
modelling algorithms and architectures. In the following section, the models examined in the present
thesis are introduced. Lists of the parameters affecting each model which were comkiderealso
included.All the model parameters considered and MATLAB functions used are summarfTzdadahO.

3.21 Neural Networks (NN)

The human brain consists of billions of neurons connected together. Signals of diffeeardities are
transmitted throughout this network. All the input signals to a neuron are summed together and if the
sum exceeds a threshold value, then the specific neuron is triggered. The neural network architecture
observed in biological procedures hasen studied and has been adapted as a mathematical construct,
forming what are known as Atrtificial Neural Networks. This computational model was firstly proposed in
1943[29] andhas been refined over the years.

The typicakinglelayer neural network architecture is shownkigure8. Multiple hidden layers can be
inserted in the architecture.

Output layer

Hidden layer

Figures: Singlelayer neural network architectur@mage from[27])
The procedure to obtaia prediction from a singkdayer naural network is the following:

The inputvector @ is multiplied by the respective weights the hiddenlayer connections and

the sum is obtained for each neuron. Then at each neuron, this sum is passed through an
GFrOGADrGA2YE FdzyOliA2yd ¢KS LINRPOSRdAzZNBStskan NBE LIS
each output neuron is the prediction vectdquationl describes the calculation procedure in a

single neuron.
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Equationl: Single neuron calculan [27]

For each neuron the input vector X is multipliedtbg respective weights of each connection

FYR G0KS NBadzZ Ga NBE addzYYSR 06Ad K. TAiKsBMistReRA G A 2 Y
LI 3aSR GKNRdzZAK |y (x§ witch fothelrdsdity of RedpyeSentitregiséwas

chosen to be the taisigmoid function.

This procedure is made for each neuron in the hidden layer and then all the outputs from that

la@ SNJ  NB dzaSR Ay GKS alyYS gle +ta |y AyLdzi @SSO
GKS al OUAGIGA2y ¢ FdzyOlAazy OK2aSy HRiENSingd SNI 41
the network constitutes the process of determining the wegyof the connections so that it

performs in a given accuracy on a knowaining set of X and Y. Many different training, or

learning, algorithms exist for neural networkihis type of network is called Fe€drward and

the implementation from MATLAB ed in the current thesis the functionfeedforwardnet

[30].

Fa simplicity and clarity, the output of the network (and any other model examined) was chosen
to be always a scalar, thus making the collection of the outputs a vettos. is why Y (the
original/actual values) is a vector.

Hidden Layer Output Layer
| p | [
o g
6  _ B 1
12 1
Hidden Layer 1 Hidden Layer 2 Output Layer

Output

e g g il

12 1

Figure9: Single (a) and double (b) hidden layer neural network architectures used

In Figure9, the neural network architectures used in the present thesis in MATLAB are shown. There are
6 input variables and a single output. In tfigure, there are 12 neurons in each hidden layer.

A common problem with neural networks is overfitting. This means that the model has adapted to the
training data with too much precisionbut fails to perform equally welto predicting from new
observatins. To address this the neural network must not be trained to match the training set exactly,
but with some tolerance. In the training of the network in MATLAB, independent of the training algorithm,
the error of a validation set is computed at each stéfhe error on that validation set does not improve
more than a threshold for a specified number of training st@gpterred to as Maximum validation checks

in Table2), or epochs, then the training stops. This validation satsabset of the training set passed to

the algorithm and is different than the validation set used to choose between the nuisance parameters of
the network. The ratio of that internal partitioning ratio of tlainingset into training and validation is
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assumed equal for each layer and thus considered as one parameter.

Parameter
Number of neurons
Number of layers
Training funtion
Maximum validation checks
Internal ratio oftrainingdata
Internal ratio ofvalidationdata
7 Internal ratio oftest data
Table2: Neural Network parameters considered

OO WIN|F

Since for the methodology developed for the peasthesis and used in all the case studies, there is a
separatetesta SG (2 FaasSaa | Y2RSf Qa teISRFE®NI | WONER2S KSNIGZL 3§
was set to zero.

3.22 Random Forests (RF)

Clasdication and regression trees (CART) are a type of model that uses sequential splitting of the data in
a treelike structure. The splits are made so that classification or regression error is minimized. For
prediction, a sample is passed through the treel gets the output of the corresponding fidalel tree

leaf that it results in lying27]. An extension of the CART model are Random Foreatsdan Forests

were introduced byBreimanand Cutlef31]in 2001.It is a technique similar to bagging; an ensemble of
decision treesln bagging, not a single tree is grown but several and the most frequent output from each
tree is chosen for prediction (classification) or the average of the results from each trees§ien).The

main differenceof RFfrom bagging is that each tree splitappens on a random subset of the
input/explanatory variables and not to all of them. The number of variables to pick for the split is a
ydza al yOS LI NI} YSGSNI 2R Tl KIS NRZ BT (S EableE2t SR YoLE B0 2N0
As in ensemble tree bagging, the number of trees to grow is also an important parameter of the model.
Therandom forest training algorithm grows the specified number of trees and then usagesage rule

to make a prediction from the outputs of all the trees. For each single tree, a bootstrap sample is drawn
from the training set. The size of that sample is a nuisance parameter. ®hina subdivision of the
input/explanatory variables is udeo make a division as described previously, with the division process
repeated until a threshold is reached. That threshold could be the minimum number of observations per
GNBS tSI T3 ¢KAOK I|datobseivabdnsy SEmfleBIRd@NdoM Brasys dzayi be used for
either regression or classification, but in the present thesis it has been used only for regression.

Random Forests are averaging many unbiased smaller models (trees), which lowers the variance and thus
preventsoverfitting.
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The implementatiorclassin MATLAB is calletreeBagger [32] and the nuisance parameters of the
model examined are all outlined on .

Parameter
Number of trees
Number of variables to sample
Bootstrap sample sizatio
Sample with replacement (true/false
5 Minimum leaf observatios
Table3: Random Forest parameters considered

ArIWINIF

Random Forests(tm), or RF(tm) is a trademark of Leo Breiman and Adele Cutler.

3.23 Radial Basis Function Networks (RBFN)

One can conceptually think of Radial Basis Function NetWB®REN) as neural networks for which the

GFr OUAGIGARZ2Y TFdzy QiA2yé¢ 2F SI OK y SdZhB pointlodwhichQtiedzt £ £ &
Gaussian basis function of each neuron is centered is the result of the training process. Essentially, each
neuron captures and outputs how similar the input is to the vector on which the neuron is centered at.

The standard deviation of each neuron (considered constant for all neurons in this research) determines
the spread of influence of that neuron and is aing parameter of the network.

This type of network was firstly introduced [82] and the implementation used for the case studies
presented is in MATLAB with timewrb function[33]. The nuisance parameters of the implementation
of RBFN are shown Trable4. Al the other network parameters were kept at the default val(@3].

The trainingorocess of the network starts with no neurons. Then the network is simulated fdraimeng

set data and neurons are added at each step starting by matching the input vector that had the greatest
error on the previous simulation while also adjusting tireights to minimize error overall. The MSE goal
threshold that stops the training is a parameter of the network.

A representation of the architecture of a RBFN is showfigarel0. The outputs from the network are
schematicallyshown as being 2, but it is again noted that throughout the current manuscript, there is
always a single output for all the case studies.
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Figure10: RBFN network architectur@mage from[34])

Figure11: RBFN architecture MATLAB

Parameter
1 Mean squared error goal
2 Spread of radial basis function
3 Maximum number of neurons

Table4: RBFN parameters considered

3.24 Radial Basis Function Networks Exact (RBFNE)

A speciatype of RBFN models, Radial Basis Function Networks Exact (RBFNE) are designed so that they
produce zero error on thainingset inpufoutput data. The implementation used in the framework was

a! ¢ [ 'newtbéd function[35]. For the zero training error to be achieved, a special training process of

the network is used. Speditilly, the single layer of Gaussian radial basis functions is assigned weights
Xtrain and its biases are set to 0.826/spresal that all the radial basis functions cross 0.5 at weighted
inputs of +£ spread. Then the weights and biases of the output layercalculated by solving a system of

linear equations so that the network matches the outputs of thaning set exactly. A more detailed
explanation of the algorithm is [35].

Therefore the only parameter that RBFNE has is the spread of the radial basis functions of the first layer.
Large values of the spread could cansenerical problems and result in the RBFNE not having zero error
on thetraining set. The straightforward training process of RBFNE and the fact that there is only one
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parameter to influence it and to be chosen from tredidationset error, makes the tiaing of RBFNE very
quick as will be observed in later results.

The main advantage of RBFNE is deployment speed. However, the major drawback is the potential
overfitting of thetrainingd SG® ¢ KS Y2RSf Qa LISNF2NXIyOS vYdrald o085
separatetest set to determine whether it could be used for predictidrhis effect is illustrated iRigure
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Figure12 RBFNIa) Training versugb) Test performance

Parameter
1 | Spread ofadial basis functiong
Table5s: RBFNE parameters considered

3.25 Multivariate Adaptive Regression Splines (MARS)

MARS is a technique that uses piecewise basis functions in a stepwise training procedure for regression.
It was intoduced by J.H. Friedman @91 [24]. The implementation in MATLAB used in the present thesis

can be found o1f36].

The basis function types considered are piecewise cubic and piecewise linear. The maximum number of
basis functions included in the model was another parameter of the models whichxaasreed here.

There exist more parameters which are described in more deti2Hin[27], [36] For the case studies to
follow, the values chosen are outlinéar the reproduction of results ifiable?.
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Parameter

1 Piecewise function type (cubic/linea
2 Maximum number of functions
Tables: MARS parameters considered

Parameter Value
1 Generalizedrossvalidation (GCV) penalty per knot| 3
2 Self Interactions 1 (no interaction)
3 Maximum Interactions # features * (Self Interactions;
4 Termination threshold le3

Table7: MARS parameters kept constant

3.26 Krigingegression (KR)G

Kriging isa surrogate modelling method similar to RBFN. A main difference is that in Kriging, the width of
the basis functions is allowed to vary for each variable. It is thus more flexible than RigFhidth of

each basis function depends on the ation of the sample point to which it is centered with the
surrounding points and idetermined through and optimization routine during the training process.

Kriging was firstly described by Daniel G. Krige in I9B[land Sacks et dl19]. The method has been
implemented by the DACE MATLAB toolf#8]. The parameters that can be altered are the type of
regression functions to use (polynomials of degree 0, 1 or 2) and the correlation function used to adjust
the basis functions.

The weights of the basis functions weeanitialized randomly with values between 0 and 1 at the beginning
of the algorithm, provided that in the general case we have no indication of an initial estimate of their
value.

Parameter
1 Degree of polynomial regression function (0/1
2 Correlaton function

Tableg: KRIG parameters considered

The different correlation functions examined are outlinedable9. Their names are as they appear in
the DACE toolbox documentation, where the exact folas can also be four[88].
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Name

EXP
GAUSS
LIN
SPHERICAL
CuBIC

6 SPLINE
Table9: KRIG correlation functions considered

G WINF

In Figurel3an example dataset frorf88] is show with different configurations of the parameters to
showcase the difference they can malée black dots are the sampled points used for training the
Kriging model and the surfaces are the result of applying the trained model on a fine grid.

@)

Figure13 KRIG example; a) regpoly0, correxp b) regpolyl, corrgausgpoly2, corrspline

35




































































































































































































































































































































































































































