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Abstract 

This thesis explores the use of approximation algorithms, sometimes called surrogate modelling,   

in the early-stage design of structures. The use of approximation models to evaluate design 

performance scores rapidly could lead to a more in-depth exploration of a design space and its 

trade-offs and also aid in reducing the computation time of optimization algorithms. Six machine-

learning-based approximation models have been examined, chosen so that they span a wide 

range of different characteristics. A complete framework from the parametrization of a design 

space and sampling, to the construction of the approximation models and their assessment and 

comparison has been developed. New methodologies and metrics to evaluate model 

performance and understand their prediction error are introduced.  The concepts examined are 

extensively applied to case studies of multi-objective design problems of architectural and civil 

structures. The contribution of this research lies in the cohesive and broad framework for 

approximation via surrogate modelling with new novel metrics and approaches that can assist 

designers in the conception of more efficient, functional as well as diverse structures. 
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1. Introduction 
 

The engineering design process is a demanding endeavor. It is a mix of analytical tools with human 

intuition. The design of new structures lies on the same category. It is complex; it involves multiple 

objectives and numerous parameters. The work on this thesis contributes in this area and has the goal to 

empower designers to achieve more efficient structures, by using a type of approximation technique 

called surrogate modelling. 

 

1.1 Structural optimization 
 

To the extent of the feasible and the realistic, optimization is strived for in engineering design. In structural 

engineering, specifically, optimization is a process that involves many physical constraints, such as 

construction, material production and transportation, cost, safety and many more. At the same time, in 

the discipline of architecture, more abstract considerations are prioritized in design; functionality, 

aesthetics and human psychology just to name a few. Both disciplines are combined in practice, sharing 

the same goals to produce a single result.  

Unlike other engineering disciplines, the optimization objective goals and constraints are not always easily 

quantified and expressed in equations, but rather require human intuition and initiative to materialize. 

For this reason, structural optimization has yet to reach its full potential. With modern computers and 

tools available, this potential is beginning to be realized. There are a few examples where it has been 

successfully applied to buildings, such as in projects by Skidmore Owings & Merrill (SOM) [1], shown in 

Figure 1. To illustrate the breadth of designs for braced frame systems, another one by Neil M. Denari 

Architects is shown in Figure 2 (High Line 23, New York City [2]). While this design is not structurally 

optimized, its architectural success is closely linked to its structural system and geometry. So, in the 

structural design optimization, there needs to be a balance between quantitative and qualitative 

objectives. 

 

Figure 1: Optimized braced frame system, SOM (Image from [1]) 
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Figure 2: Braced frame system, Denari Architects (Image from [2]) 

 

On the one hand is the quantitative aspect of optimization. Structural evaluation simulations as well as 

energy simulations, which compute the energy consumed by a building, often require significant 

computational power, increasing with the complexity and size of the project. Thus, optimization 

algorithms can usually require substantial execution time. To put this in context, for energy simulations 

included in the case studies, the time required for one sample evaluation was approximately 25 sec, which 

impedes a free-flowing design process. This fact slows down the design process. On the other hand, 

because of the qualitative nature of this type of design with the hard-to-quantify considerations as 

described above, many iterations are required and the result is never likely to come up from a single 

optimization run. In practice, the combination of slow simulation and problem formulation challenges 

means that optimization is rarely used in the design of architectural and civil structures. In fact, even 

quantitatively comparing several design alternatives can be too time-consuming, resulting in poor 

exploration of the design space and likely a poorly performing design. 

 

1.2 Need for computational speed 
 

The exploration of the design problem and various optimal solutions should ideally happen in real time, 

so that the designer is more productive. Research has shown that rapid response time can result in 

significant productivity and economic gains [3]Φ άLƳǇǊƻǾŜŘ ƛƴŘƛǾƛdual productivity is perhaps the most 

ǎƛƎƴƛŦƛŎŀƴǘ ōŜƴŜŦƛǘ ǘƻ ōŜ ƻōǘŀƛƴŜŘ ŦǊƻƳ ǊŀǇƛŘ ǊŜǎǇƻƴǎŜ ǘƛƳŜέ [3]. The upper threshold for computer 

response time for optimal productivity has been estimated at 400ms and is commonly referred to as the 

Doherty threshold [3]. This threshold was originally developed in the 1980s for system response of routine 

tasks, like typing. Today, however, software users expect similarly rapid response for any interactions with 

the computer, even those that require expensive calculations like performance simulation. Immediate 
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response from the computer can benefit not just rote productivity, but also creative thinking. The concept 

of flow ƛǎ ǳǎŜŘ ƛƴ ǇǎȅŎƘƻƭƻƎȅ ǘƻ ŘŜǎŎǊƛōŜ άŎƻƳǇƭŜǘŜƭȅ ŦƻŎǳǎŜŘ ƳƻǘƛǾŀǘƛƻƴέΤ ǿƘŜƴ ŀ ǇŜǊǎƻƴ ƎŜǘǎ Ŧǳƭƭȅ 

immersed and productive. It was thoroughly studied by M. Csikszentmihalyi [4] and among the 

components for someone to experience flowΣ άƛƳƳŜŘƛŀǘŜ ŦŜŜŘōŀŎƪέ ƛǎ ƭƛǎǘŜŘΦ 

The first way to implement the άƛƳƳŜŘƛŀǘŜ ŦŜŜŘōŀŎƪέ ŜŦŦŜŎt in computer response is by increasing the 

available computational power. This can be achieved by either increasing the processing power of a 

computer or by harnessing parallel and distributed computing capabilities. The other way is to use 

different or improved algorithms. This thesis focuses on the second approach, investigating algorithms 

that improve computational speed for design-oriented simulation through approximation. 

 

1.3 Surrogate modelling 
 

Among possible approximation algorithms, this thesis considers surrogate modelling algorithms, a class 

of machine learning algorithms, and their use in making computation faster and allowing for more 

productive exploration and optimization in the design of buildings.  

Machine learning is about creating models about the physical world based only on available data. The 

data are either gathered though physical experiments and processes, or by computer-generated samples. 

Those samples are then fit to an approximation mathematical model, which can then be used directly as 

the generating means of new representative data samples. In surrogate modelling specifically, the data is 

collected from simulations run on the computer. 

Similar techniques are being used successfully in many other engineering disciplines, but have not been 

studied and applied extensively to the architectural and structural engineering fields. This research 

investigates these techniques and evaluates them on various related case studies. Focus is given in the 

development of a holistic framework that is generalizable. 

 

Figure 3: άaŀƴȅ ǎǳǊǊƻƎŀǘŜǎ Ƴŀȅ ōŜ ŎƻƴǎƛǎǘŜƴǘ ǿƛǘƘ ǘƘŜ Řŀǘŀέ όCƛƎǳǊŜ ŦǊƻƳ [5]) 

Figure 3 displays a core concept in surrogate modelling. The circles represent the available data, with 

many different models being able to fit them. The art in surrogate modelling is to choose the one that will 

also fit new data well. 
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1.4 Research question 
 

This thesis considers two key questions: 

Is surrogate modelling a viable methodology to use in this field? 

The main focus of this thesis is to examine the use of surrogate modelling in the design of architectural 

and civil structures as a method to rapidly explore the design space and obtain more efficient solutions. 

It applies it in case study problems and tests its applicability and effectiveness. 

How robust is surrogate modelling? 

Questions of how good an approximation method is are addressed. Also considered are matters of how 

accurate a model is and how its error value and variability can be estimated. Methods for this purpose are 

proposed and applied. 

 

1.5 Organization of thesis 
 

First, a literature review of the existing research in surrogate modelling, its application in structural 

engineering problems, model types and error assessment methods is outlined in Chapter 2. Chapter 3 is 

an overview of the main features of the methodology framework used, including assumptions and 

descriptions of the models used. Sampling and outlier removal techniques are also discussed. Chapter 4 

is dedicated to explaining the error assessment and visualization methods used throughout the rest of the 

thesis. Chapter 5 introduces the proposed method for robust model comparison, whose use is then 

illustrated through the case studies in Chapters 6 and 7. Specifically, Chapter 6 introduces the case study 

problems, the parameters examined and the analysis assumptions, while Chapter 7 presents all the 

numerical results obtained for comparing model performances and assessing them individually for all the 

case study problems. The original contributions, findings and future considerations are summarized in 

Chapter 8. Finally, in the Appendix, a sample of the outputs of the developed MATLAB framework is 

presented for one case study (Airport terminal) and for one performance score approximation (Energy 

Overall). 
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2. Background 
 

To avoid a computationally expensive simulation, one approach is to construct a physical model that is 

simpler and includes more assumptions than the original. This process is very difficult to automate and 

generalize and requires a high level of expertise and experience in the respective field. A more general 

approach is to substitute the analytical simulation with an approximate model (surrogate) that is 

constructed based purely on data. This approach is referred to as data-driven or black-box simulation. The 

reason is that the constructed approximation model is invariant to the inner details of the actual 

ǎƛƳǳƭŀǘƛƻƴ ŀƴŘ ŀƴŀƭȅǎƛǎΦ ¢ƘŜ ƳƻŘŜƭ Ƙŀǎ ƻƴƭȅ άǎŜŜƴέ Řŀǘŀ ǎŀƳǇƭŜǎ ǘƘŀǘ ƘŀǾŜ ǊŜǎǳƭǘŜŘ ŦǊƻƳ ŀƴ άǳƴƪƴƻǿƴέ 

process, thus the name black-box. This thesis addresses data-driven surrogate modelling. 

The two main areas in which surrogate modelling can be applied are for optimization and design space 

exploration. Specifically, an approximation (surrogate) model can be constructed as the main evaluation 

function for an optimization routine or just in order to explore a certain design space in its entirety, better 

understand variable trade-offs and performance sensitivity. For optimization, it is often used when there 

are more than one optimization objectives, thus called multi-objective optimization (MOO), and the 

computational cost of computing them is significant. 

 

2.1 Surrogate modelling on structural designs 
 

Several years ago, when the computational power was significantly less than that of today, one available 

today, scientists started to explore the possibility of adapting approximation model techniques in 

intensive engineering problems. One of the first attempts of this kind in the field of structural engineering 

by Schmit and Miura [6] in a NASA report in 1976. A review of the application of approximation methods 

in structural engineering was published by Barthelemy and Haftka in 1993 [7]. The methods explored in 

this review paper are response surface methodology (RSM) as well as neural networks (NN). It was 

mentioned that more methods will emerge and the practice is going to expand. In fact, today, although 

the computational power has increased exponentially from twenty years ago, the engineering problems 

that designers face have also increased dramatically in scale and therefore surrogate modelling has been 

studied and applied extensively. 

Hajela and Berke wrote a paper in 1992 [8] solely dedicated to an overview of the use of neural networks 

in structural engineering problems. They mentioned that this approximation technique could be useful in 

the more rapid evaluation of simulations such as non-linear structural analysis. Neural networks and 

approximation models have still great potential in this field today, when non-linear structural analysis is 

very frequently performed. Researchers have been using approximation algorithms in the structural 

engineering field for various problems such as for the dynamic properties and response evaluation and 

optimization of structures [9], for seismic risk assessment [10] and for energy MOO simulations [11]. 

Energy simulations are extensively examined in this thesis, since they are usually extremely expensive 

computationally, and at the same time their use and importance in building and infrastructure design is 

increasing today. 
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The use of approximation algorithms in conceptual architectural/structural design was very interestingly 

examined by Swift and Batill in 1991 [12]. Specifically, for truss problems, with the variables being the 

positions of some nodes of the truss and the objective the structural weight, a design space was sampled 

and later approximated using neural networks. A representative figure from this paper can be seen in 

Figure 4, where the initial base structure and the variable ranges are shown in Figure 4a, while the best 

designed obtained from the neural network approximation is on Figure 4b. 

 

 

Figure 4: Ten-bar truss (a) design space and (b) best design resulting from NN model (Image from 
[12])  

A similar approach was followed by Mueller [13], with a seven-bar truss problem examined being shown 

in Figure 6a. The variables were again the positions of the nodes and specifically the vertical nodal 

positions as shown along with their ranges in Figure 6a. The design space (with the structural weight as 

the objective score) computed analytically, without approximation is shown in Figure 6b. The 

approximated design space for different models is shown in Figure 6. Details on the approximation models 

used later are presented in the following section on model types. 

 

Figure 5: Seven-bar truss (a) variables and (b) analytically computed design space (Image from 
[13]) 

(a) (b) 

(a) (b) 
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Figure 6: Seven-bar truss approximated design space for different parameters (Image from [13])  

It is also worth mentioning that surrogate modelling is being used extensively in the aerospace industry. 

The basic principles remain the same across disciplines since the methodology relies solely on data. 

Queipo et al. [5] have made a thorough overview of the common practices of surrogate modelling. They 

also applied those techniques in an MOO problem from the aerospace industry. Another comprehensive 

survey of black-box approximation method for use in high-dimensional design problems is included in 

[14]. 

There exist attempts of integrating performance evaluation into parametric design in architectural and 

civil structures. Mueller and Ochsendorf [15] considered an evolutionary design space exploration, Shi 

and Wang [16] examined performance-ŘǊƛǾŜƴ ŘŜǎƛƎƴ ŦǊƻƳ ŀƴ ŀǊŎƘƛǘŜŎǘΩǎ ǇŜǊǎǇŜŎǘƛǾŜΣ ǿƘƛƭŜ DǊŀƴŀdeiro et 

al. [17] studied the integration of energy simulations into early-stage building design. All of those 

interesting approaches could benefit by the use of surrogate modelling, which is the main contribution of 

this thesis. 

 

2.2 Model types 
 

Several methods have been developed over the years to approximate data and have been used in 

surrogate modelling applications. Very common ones include polynomial regression (PRG) and response 

surface methodology (RSM) [18], in which a polynomial function is fitted to a dataset using least squares 

regression. This method has been used in many engineering problems [5]. 

One of the most widely used surrogate modelling method in engineering problems is Kriging (KRIG). Since 

it was formally established in the form it is used today [19], it has been applied extensively ([10], [5], [20]). 

Gano et al. [21] compared Kriging with 2nd order polynomial regression. Chung and Alonso [20] also 

compared 2nd order RSM and Kriging for an aerospace case study and concluded that both models 

performed well and are pose indeed a realistic methodology for engineering design. 

Another very popular model type are artificial neural networks (referred as NN in this thesis). Extensive 

research has been performed on this type of model ( [5], [8] ). Neural networks are greatly customizable 

and their parameters and architecture are very problem specific. 

A special type of neural network is called radial basis function network (RBFN) and was introduced by 

Broomhead and Lowe [22] in 1988. In this network, the activation function of each neuron is replaced by 
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a gaussian bell curve function. A special type of RBFN imposes the Gaussian radial basis function weights 

such that the networks fits the given data with zero error. This is referred to as radial basis function 

network exact (RBFNE) and its main drawback is the high possibility that the network will not generalize 

well on new data. Those two types of models, RBFN and RBFNE, are explained in more detail in Chapter 3 

as they are studied more extensively in this thesis. 

Radial basis functions can also be used to fit high dimensional surfaces from given data. This model type 

is called RBF [23] and is different from the RBFN model. RBF models can also be referred to as gaussian 

radial basis function models [5]. Kriging is similar to RBF, but it allows more flexibility in the parameters. 

Multivariate adaptive regression splines (MARS) is another type of model. This performs a piecewise linear 

or cubic multidimensional fit to a certain dataset [24]. It can be more flexible and capture more complex 

datasets, but requires more time to construct. 

Jin et al. [25] performed a model comparison for polynomial regression, Kriging, MARS and RBF models. 

They used 13 mathematical problems and 1 engineering one to perform the comparisons. Many other 

references for papers that performed comparisons between those and other models are also included in 

[25]. An important feature outlined in this paper was that it set five major aspects to compare the models. 

Those were accuracy, robustness (ability to make predictions for problems of different sizes and type), 

efficiency (computational time to construct model), transparency (ability of the model to provide 

information about variable contribution and interaction) and conceptual simplicity. Those issues are 

examined in following sections in the present thesis. 

Finally, the existing MATLAB-based framework SUMO [26], implements support vector machines (SVM) 

[27] (a model type frequently used for classification), Kriging and neural network models, along with the 

sampling and has been used in many applications such as RF circuit modelling and aerodynamic modelling 

[26]. 

A framework with NN, Random Forests (RF) which have not extensively been applied in structural 

engineering problems, RBFN, RBFNE, MARS and KRIG models was developed and tested in case study 

problems in the current thesis to extend the existing research and available methodologies for structural 

design. 

There is a lack of extensive model comparison and their application on problems for structural engineering 

and building design specifically; this thesis addresses this need to move beyond existing work. 

 

2.3 Error in surrogate models 
 

The most important error required to assess an approximation model is what is called its generalization 

error. This is more thoroughly examined in the following section about robustness. In the current section, 

ways to quantify a modelΩs performance on a given set of data are discussed. When the actual 

performance calculated from the analytic simulation is known for a set of data, and the respective 

performance from an approximation model is calculated, then the error of the predicted versus the actual 

performance can be calculated by many different measures. All the following error measures are 

computed between the actual (represented by y) ς and predicted (represented by h) values. 
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One of the most common ones is R2, which refers to the correlation coefficient of the actual with the 

predicted values. A value closer to 1 indicates better fit. This is extensively discussed in this thesis in 

Chapter 4 about error. Other common measures are the Mean Squared Error (MSE) and its root, the Root 

Mean Squared Error (RMSE). The Average Absolute Error (AAE) and the Maximum Absolute Error (MAE) 

are other options, along with Relative Average Absolute Error (RAAE) and the Relative Maximum Absolute 

Error (RMAE). MAE is generally not correlated with R2 or AAE and it can indicate whether the model does 

not perform well only in a certain region. The same holds true for RMAE, which is not necessarily 

correlated with R2 or RAAE. However, R2, RAAE and MSE are usually highly correlated [25], which makes 

the use of more than one of them somewhat redundant. Gano et al. [21] used R2, AAE and MAE for the 

model comparisons they studied, while Jin et al. [25] used R2, RAAE and RMAE. 

The above mentioned error metrics are summarized along with their formulas on Table 1. 

 

 Error metric Formula 

1 MSE 
В ώ Ὤ

ὲ
 

2 RMSE 
В ώ Ὤ

ὲ
 

3 R2 ρ
В ώ Ὤ

В ώ ώ
 

4 AAE 
В ȿώ Ὤȿ

ὲ
 

5 RAAE 
В ȿώ Ὤȿ

ὲϽὛὝὈώ
 

6 MAE ÍÁØ ȿώ Ὤȿȟȿώ Ὤȿȟȣȟȿώ Ὤȿ 

7 RMAE 
ÍÁØ ȿώ Ὤȿȟȿώ Ὤȿȟȣȟȿώ Ὤȿ

34$Ù
 

Table 1: Common surrogate modelling error metrics (y: actual, h: predicted value) 

 

Error measures which provide a more direct and comprehensive quantitative model performance metric 

are lacking, and some alternative approaches to address this are presented in this thesis. Error measures 

ōŀǎŜŘ ƻƴ ŀ ƳƻŘŜƭΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƻƴ ǘƘŜ Ǌŀƴƪ ƻŦ ǘƘŜ ǎŀƳǇƭŜǎ [13] are also studied. Special focus is also 

given to the visualization of the results and it is argued that normalization and visualization can have a 

significant impact in understanding error and are problem specific. 
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2.4 Robustness in surrogate modelling 
 

As mentioned in the beginning of the previous section, it is crucial for a surrogate modelling application 

to have an acceptable generalization error. This refers to an error estimate of the model on new data. In 

this context, new data means data samples that have not been used at any point in the construction of 

the model. One can realize that this is indeed the most important error required since the rapid generation 

of accurate new data performance is the main objective of the construction of the surrogate model in the 

first place.  

To estimate the generalization error, several techniques exist. Those are explained in detail in Queipo et 

al. [5] and Viana et al. [28]. The simplest one is to split a given dataset into train and test data, construct 

the model with the train data and then compute the error in the test data and take this as an estimate of 

the generalization error. Another technique is called cross-validation (CV), in which the original dataset is 

split into k parts and the model is trained with all the parts except one, which is used as the test set of the 

previous case. The procedure is then repeated until each one of the k sets has served as the test set. By 

taking the mean of the test set errors, a more robust generalization error estimate is produced. Another 

ŀŘǾŀƴǘŀƎŜ ƛǎ ǘƘŀǘ ŀ ƳŜŀǎǳǊŜ ƻŦ ǘƘƛǎ ŜǊǊƻǊΩǎ ǾŀǊƛŀōƛƭƛǘȅ Ŏŀƴ ōŜ ƻōǘŀƛƴŜŘ ōȅ ǘŀƪƛƴƎ, for example, the standard 

deviation of the computed k test set errors. If this procedure is repeated the same number of times as the 

number of samples in the original dataset, which means that only a single sample is used every time as 

the test set, then this measure is called PRESS and the method leave-one-out cross validation [28]. The 

last method to obtain a robust generalization error measurement is through Bootstrapping. According to 

the known definition of the bootstrap (sample with replacement), a certain number of bootstrap samples 

(datasets) are created as training and test sets. Then the error estimate and its variability calculation 

procedure is similar to the CV method. For the Bootstrapping method to produce accurate results, a large 

number of subsamples is usually needed [28].  

This thesis attempts a combination of the aforementioned techniques frequently used in the surrogate 

modelling context with the common practice of machine learning applications (train/validation/ test set 

partition) to obtain a measure of robustness as well as accuracy. 

Another way to interpret robustness is to consider it as the capability of the approximation model to 

provide accurate fits for different problems. This again can be measured by the variance of accuracy and 

error metrics. However, the scope of this thesis is to examine the deployment of approximation models 

ŦƻǊ ŎŀǎŜ ǎǘǳŘȅ ŘŜǎƛƎƴ ǇǊƻōƭŜƳǎ ŀƴŘ ƴƻǘ ǘƻ ŎƻƳƳŜƴǘ ƻƴ ŀ ƳƻŘŜƭΩǎ ƳƻǊŜ ƎŜƴŜǊŀƭ ǇǊŜŘƛŎǘƛǾŜ ŀōƛƭƛǘȅ ǊŜƎŀǊŘƛƴƎ 

its mathematical properties. 

Finally, to increase robustness, one could use ensembles of surrogate models in prediction [5]. This means 

that several models are trained and their results are averaged with a certain scheme to obtain a 

prediction. Models of this type are Random Forests (RF), which are studied in this thesis and explained in 

more detail in the next chapter. 
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2.5 Unmet needs, open questions 
 

As described in the previous sections, the field of surrogate modelling in engineering design is very rich. 

However, its use in the design of architectural and civil structures is limited compared to other engineering 

disciplines. There is a need for a comprehensive study of its use in this area to examine whether they can 

be feasible and realistic in practice. The thread of their use in conceptual structural design was left in 1992 

[12] and picked up recently [13]. An extension of the study in this field is necessary, since the advantages 

that rapid exploration and optimization can have in early stage structural design could be significant. 

While many model types have been investigated, few have been applied to real problems in this field. 

There is also a field within a field in error estimation and visualization of approximation models, which 

needs to further be explored. Specifically, what other types of error metrics and visualization techniques 

can be used in surrogate modelling applications are among the questions this thesis will address. A main 

concept that is addressed and pointed out throughout the thesis is that the prediction results of a model 

should be visualized instead of just obtaining an error metric value. 

Model robustness considerations are also examined thoroughly, proposing a methodology that is focused 

on approximating data by combining ideas from various surrogate modelling/machine learning contexts 

and has the goal of broad applicability and scalability in architectural and civil structure design 

applications.  
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3. Methodological framework 
 

This chapter outlines in detail the basic components used throughout this research, the proposed 

methodology and the case studies, all thoroughly explained in the following chapters. In general, the 

framework developed is based on sampling a design scape in the first place and then constructing and 

assessing the surrogate models. For the sampling part, the Rhino software and the Grasshopper plugin 

were used. They are parametric design tools very broadly used in architectural design. As for the surrogate 

modelling part, the framework and all of the analysis was performed in MATLAB. References to the 

specific functions and special capabilities of the software are placed in context in the text. 

 

3.1 Surrogate modelling procedure 
 

The basic surrogate modelling procedure consists of three phases; training, validation and testing. A 

separate set of data is needed for each of those phases. During the training phase, a model is fit into a 

specific set of data, the training set. The fitting process refers to the construction of the mathematical 

model; the determination of various weighting factors and coefficients. In the next phase, the trained 

model is used on a different set of data, the validation set, and its prediction error on this set is computed. 

The first two steps of training and validation are repeated several times with different model parameters. 

The model that produced the minimum error on the validation set, is then chosen for the final phase of 

testing. During testing, another dataset, the test set, is used to assess the performance of the model 

chosen from the first two steps (minimum validation set error). 

The steps are shown schematically in Figure 7. Each model type can have multiple parameters which 

define it. Those are referred to as nuisance parameters, or simply parameters in the following chapters. 

Different nuisance parameters can result in different levels of model fit and accuracy. Choosing the best 

nuisance parameters for a given model type is the goal of the validation phase as described in the previous 

ǇŀǊŀƎǊŀǇƘΦ ¢ƘŜ ǘŜǎǘ ǇƘŀǎŜ ƛǎ ŦƻǊ ǾŜǊƛŦƛŎŀǘƛƻƴ ƻŦ ǘƘŜ ƳƻŘŜƭΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƻƴ ŀ ƴŜǿ ǎŜǘ ƻŦ ŘŀǘŀΣ ƴŜǾŜǊ 

previously used in the process (training or validation). More details can be found in [27]. 

  

 

Figure 7: Surrogate modelling procedure 

 

 

Model 
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3.2 Model types 
 

The utilization of approximation models, referred to as surrogate models or machine learning algorithms 

in different disciplines, aims at prediction. A model is essentially a procedure that acts on input data and 

outputs a prediction of a physical quantity. Previously computed or measured values of the physical 

quantity at hand, along with the corresponding input variables, are used to create/train the model, which 

can afterwards be used to make rapid predictions on new data. There are numerous different surrogate 

modelling algorithms and architectures. In the following section, the models examined in the present 

thesis are introduced. Lists of the parameters affecting each model which were considered are also 

included. All the model parameters considered and MATLAB functions used are summarized in Table 10. 

 

3.2.1 Neural Networks (NN) 
 

The human brain consists of billions of neurons connected together. Signals of different intensities are 

transmitted throughout this network. All the input signals to a neuron are summed together and if the 

sum exceeds a threshold value, then the specific neuron is triggered. The neural network architecture 

observed in biological procedures has been studied and has been adapted as a mathematical construct, 

forming what are known as Artificial Neural Networks. This computational model was firstly proposed in 

1943 [29] and has been refined over the years. 

The typical single-layer neural network architecture is shown in Figure 8. Multiple hidden layers can be 

inserted in the architecture. 

 

Figure 8: Single-layer neural network architecture (Image from [27]) 

The procedure to obtain a prediction from a single-layer neural network is the following: 

The input vector ὢ is multiplied by the respective weights of the hidden layer connections and 

the sum is obtained for each neuron. Then at each neuron, this sum is passed through an 

άŀŎǘƛǾŀǘƛƻƴέ ŦǳƴŎǘƛƻƴΦ ¢ƘŜ ǇǊƻŎŜŘǳǊŜ ƛǎ ǊŜǇŜŀǘŜŘ ŀƎŀƛƴ ŦƻǊ ǘƘŜ ƻǳǘǇǳǘ ƭŀȅŜǊ ŀƴŘ ǘƘŜ ǊŜǎǳƭts from 

each output neuron is the prediction vector. Equation 1 describes the calculation procedure in a 

single neuron. 

 

Output layer 

Hidden layer 

Input layer 
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ὤ „  ὢȟά ρȟȣȟὓ   

Equation 1: Single neuron calculation [27]  

For each neuron the input vector X is multiplied by the respective weights of each connection 

ŀƴŘ ǘƘŜ ǊŜǎǳƭǘǎ ŀǊŜ ǎǳƳƳŜŘ όǿƛǘƘ ǘƘŜ ŀŘŘƛǘƛƻƴ ƻŦ ŀ Ŏƻƴǎǘŀƴǘ άōƛŀǎέ ǘŜǊƳ ὥ ). This sum is then 

ǇŀǎǎŜŘ ǘƘǊƻǳƎƘ ŀƴ άŀŎǘƛǾŀǘƛƻƴ ŦǳƴŎǘƛƻƴέ (̀x), which for the results of the present thesis was 

chosen to be the tan-sigmoid function. 

This procedure is made for each neuron in the hidden layer and then all the outputs from that 

laȅŜǊ ŀǊŜ ǳǎŜŘ ƛƴ ǘƘŜ ǎŀƳŜ ǿŀȅ ŀǎ ŀƴ ƛƴǇǳǘ ǾŜŎǘƻǊ ǘƻ ǘƘŜ ƴŜȄǘ ƭŀȅŜǊΦ CƻǊ ǘƘŜ Ŧƛƴŀƭ άƻǳǘǇǳǘέ ƭŀȅŜǊΣ 

ǘƘŜ άŀŎǘƛǾŀǘƛƻƴέ ŦǳƴŎǘƛƻƴ ŎƘƻǎŜƴ ƘŜǊŜŀŦǘŜǊ ǿŀǎ Ƨǳǎǘ ŀ ƭƛƴŜŀǊ ŦǳƴŎǘƛƻƴ ǿƛǘƘ ǎƭƻǇŜ мΦ The training of 

the network constitutes the process of determining the weights of the connections so that it 

performs in a given accuracy on a known training set of X and Y. Many different training, or 

learning, algorithms exist for neural networks. This type of network is called Feed-Forward and 

the implementation from MATLAB used in the current thesis is the function feedforwardnet  

[30]. 

For simplicity and clarity, the output of the network (and any other model examined) was chosen 

to be always a scalar, thus making the collection of the outputs a vector. This is why Y (the 

original/actual values) is a vector. 

 

Figure 9: Single (a) and double (b) hidden layer neural network architectures used 

In Figure 9, the neural network architectures used in the present thesis in MATLAB are shown. There are 

6 input variables and a single output. In this figure, there are 12 neurons in each hidden layer. 

A common problem with neural networks is overfitting. This means that the model has adapted to the 

training data with too much precision, but fails to perform equally well to predicting from new 

observations. To address this the neural network must not be trained to match the training set exactly, 

but with some tolerance. In the training of the network in MATLAB, independent of the training algorithm, 

the error of a validation set is computed at each step. If the error on that validation set does not improve 

more than a threshold for a specified number of training steps (referred to as Maximum validation checks 

in Table 2), or epochs, then the training stops. This validation set is a subset of the training set passed to 

the algorithm and is different than the validation set used to choose between the nuisance parameters of 

the network. The ratio of that internal partitioning ratio of the training set into training and validation is 

(a) 

(b) 
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aƴƻǘƘŜǊ ǇŀǊŀƳŜǘŜǊ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ǘǊŀƛƴƛƴƎ ŀǎ ǎǳƳƳŀǊƛȊŜŘ ƛƴ Table 2. The number of neurons was 

assumed equal for each layer and thus considered as one parameter. 

 Parameter 

1 Number of neurons 

2 Number of layers 

3 Training function 

4 Maximum validation checks 

5 Internal ratio of training data 

6 Internal ratio of validation data 

7 Internal ratio of test data 

Table 2: Neural Network parameters considered 

Since for the methodology developed for the present thesis and used in all the case studies, there is a 

separate test ǎŜǘ ǘƻ ŀǎǎŜǎǎ ŀ ƳƻŘŜƭΩǎ ǇŜǊŦƻǊƳŀƴŎŜΣ ǘƘŜ άLƴǘŜǊƴŀƭ Ǌŀǘƛƻ ƻŦ test Řŀǘŀέ ǇŀǊŀƳŜǘŜǊ ƻŦ Table 2 

was set to zero. 

 

 

3.2.2 Random Forests (RF) 

 

Classification and regression trees (CART) are a type of model that uses sequential splitting of the data in 

a tree-like structure. The splits are made so that classification or regression error is minimized. For 

prediction, a sample is passed through the tree and gets the output of the corresponding final-level tree 

leaf that it results in lying [27]. An extension of the CART model are Random Forests. Random Forests 

were introduced by Breiman and Cutler [31] in 2001. It is a technique similar to bagging; an ensemble of 

decision trees. In bagging, not a single tree is grown but several and the most frequent output from each 

tree is chosen for prediction (classification) or the average of the results from each tree (regression). The 

main difference of RF from bagging is that each tree split happens on a random subset of the 

input/explanatory variables and not to all of them. The number of variables to pick for the split is a 

ƴǳƛǎŀƴŎŜ ǇŀǊŀƳŜǘŜǊ ƻŦ ǘƘŜ ƳƻŘŜƭ ŎŀƭƭŜŘ άbǳƳōŜǊ ƻŦ ǾŀǊƛŀōƭŜǎ ǘƻ ǎŀƳǇƭŜέ ƻƴ Table 3.  

As in ensemble tree bagging, the number of trees to grow is also an important parameter of the model. 

The random forest training algorithm grows the specified number of trees and then uses an average rule 

to make a prediction from the outputs of all the trees. For each single tree, a bootstrap sample is drawn 

from the training set. The size of that sample is a nuisance parameter. Then only a subdivision of the 

input/explanatory variables is used to make a division as described previously, with the division process 

repeated until a threshold is reached. That threshold could be the minimum number of observations per 

ǘǊŜŜ ƭŜŀŦΣ ǿƘƛŎƘ ƛǎ ǇŀǊŀƳŜǘŜǊ άaƛƴƛƳǳƳ leaf observationsέ ƻƴ Table 3. Random Forests can be used for 

either regression or classification, but in the present thesis it has been used only for regression. 

Random Forests are averaging many unbiased smaller models (trees), which lowers the variance and thus 

prevents overfitting.   
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The implementation class in MATLAB is called TreeBagger  [32] and the nuisance parameters of the 

model examined are all outlined on . 

 Parameter 

1 Number of trees 

2 Number of variables to sample 

3 Bootstrap sample size ratio 

4 Sample with replacement (true/false) 

5 Minimum leaf observations 

Table 3: Random Forest parameters considered 

Random Forests(tm), or RF(tm) is a trademark of Leo Breiman and Adele Cutler. 

 

3.2.3 Radial Basis Function Networks (RBFN) 
 

One can conceptually think of Radial Basis Function Networks (RBFN) as neural networks for which the 

άŀŎǘƛǾŀǘƛƻƴ ŦǳƴŎǘƛƻƴέ ƻŦ ŜŀŎƘ ƴŜǳǊƻƴ ƛǎ ŀŎǘǳŀƭƭȅ ŀ Dŀǳǎǎƛŀƴ ǊŀŘƛŀƭ ōŀǎƛǎ ŦǳƴŎǘƛƻƴΦ The point on which the 

Gaussian basis function of each neuron is centered is the result of the training process. Essentially, each 

neuron captures and outputs how similar the input is to the vector on which the neuron is centered at. 

The standard deviation of each neuron (considered constant for all neurons in this research) determines 

the spread of influence of that neuron and is a tuning parameter of the network. 

This type of network was firstly introduced by [22] and the implementation used for the case studies 

presented is in MATLAB with the newrb  function [33]. The nuisance parameters of the implementation 

of RBFN are shown in Table 4. All the other network parameters were kept at the default values [33]. 

The training process of the network starts with no neurons. Then the network is simulated for the training 

set data and neurons are added at each step starting by matching the input vector that had the greatest 

error on the previous simulation while also adjusting the weights to minimize error overall. The MSE goal 

threshold that stops the training is a parameter of the network. 

A representation of the architecture of a RBFN is shown in Figure 10. The outputs from the network are 

schematically shown as being 2, but it is again noted that throughout the current manuscript, there is 

always a single output for all the case studies. 
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Figure 10: RBFN network architecture  (Image from [34]) 

 

Figure 11: RBFN architecture MATLAB 

 Parameter 

1 Mean squared error goal 

2 Spread of radial basis functions 

3 Maximum number of neurons 

Table 4: RBFN parameters considered 

 

3.2.4 Radial Basis Function Networks Exact (RBFNE) 

 

A special type of RBFN models, Radial Basis Function Networks Exact (RBFNE) are designed so that they 

produce zero error on the training set input/output data. The implementation used in the framework was 

a!¢[!.Ωǎ newrbe  function [35]. For the zero training error to be achieved, a special training process of 

the network is used. Specifically, the single layer of Gaussian radial basis functions is assigned weights 

XtrainT and its biases are set to 0.826/spread so that all the radial basis functions cross 0.5 at weighted 

inputs of +/- spread. Then the weights and biases of the output layer are calculated by solving a system of 

linear equations so that the network matches the outputs of the training set exactly. A more detailed 

explanation of the algorithm is in [35]. 

Therefore, the only parameter that RBFNE has is the spread of the radial basis functions of the first layer. 

Large values of the spread could cause numerical problems and result in the RBFNE not having zero error 

on the training set. The straightforward training process of RBFNE and the fact that there is only one 
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parameter to influence it and to be chosen from the validation set error, makes the training of RBFNE very 

quick as will be observed in later results. 

The main advantage of RBFNE is deployment speed. However, the major drawback is the potential 

overfitting of the training ǎŜǘΦ ¢ƘŜ ƳƻŘŜƭΩǎ ǇŜǊŦƻǊƳŀƴŎŜ Ƴǳǎǘ ōŜ ŎŀǊŜŦǳƭƭȅ ŀǎǎŜǎǎŜŘ ƻƴ ŀ ŎƻƳǇƭŜǘŜƭy 

separate test set to determine whether it could be used for prediction. This effect is illustrated in Figure 

12.  

  

Figure 12: RBFNE (a) Training versus (b) Test performance 

 

 Parameter 

1 Spread of radial basis functions 

Table 5: RBFNE parameters considered 

 

3.2.5 Multivariate Adaptive Regression Splines (MARS) 
 

MARS is a technique that uses piecewise basis functions in a stepwise training procedure for regression. 

It was introduced by J.H. Friedman in 1991 [24]. The implementation in MATLAB used in the present thesis 

can be found on [36]. 

The basis function types considered are piecewise cubic and piecewise linear. The maximum number of 

basis functions included in the model was another parameter of the models which was examined here. 

There exist more parameters which are described in more detail in [24], [27], [36]. For the case studies to 

follow, the values chosen are outlined for the reproduction of results in Table 7. 

 

(a) (b) 
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 Parameter 

1 Piecewise function type (cubic/linear) 

2 Maximum number of functions 

Table 6: MARS parameters considered 

 Parameter Value 

1 Generalized cross-validation (GCV) penalty per knot 3 

2 Self Interactions 1 (no interaction) 

3 Maximum Interactions # features * (Self Interactions) 

4 Termination threshold 1e-3 

Table 7: MARS parameters kept constant 

 

3.2.6 Kriging regression (KRIG) 

 

Kriging is a surrogate modelling method similar to RBFN. A main difference is that in Kriging, the width of 

the basis functions is allowed to vary for each variable. It is thus more flexible than RBFN. The width of 

each basis function depends on the correlation of the sample point to which it is centered with the 

surrounding points and is determined through and optimization routine during the training process.  

Kriging was firstly described by Daniel G. Krige in 1951 [37] and Sacks et al. [19]. The method has been 

implemented by the DACE MATLAB toolbox [38]. The parameters that can be altered are the type of 

regression functions to use (polynomials of degree 0, 1 or 2) and the correlation function used to adjust 

the basis functions. 

The weights of the basis functions were initialized randomly with values between 0 and 1 at the beginning 

of the algorithm, provided that in the general case we have no indication of an initial estimate of their 

value. 

 

 Parameter 

1 Degree of polynomial regression function (0/1/2) 

2 Correlation function 

Table 8: KRIG parameters considered 

The different correlation functions examined are outlined in Table 9. Their names are as they appear in 

the DACE toolbox documentation, where the exact formulas can also be found [38]. 
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 Name 

1 EXP 

2 GAUSS 

3 LIN 

4 SPHERICAL 

5 CUBIC 

6 SPLINE 

Table 9: KRIG correlation functions considered 

In Figure 13 an example dataset from [38] is shown with different configurations of the parameters to 

showcase the difference they can make. The black dots are the sampled points used for training the 

Kriging model and the surfaces are the result of applying the trained model on a fine grid. 

 

Figure 13: KRIG example; a) regpoly0, correxp b) regpoly1, corrgauss c) regpoly2, corrspline 

  

(c) (b) (a) 
























































































































































































































































































