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Abstract 

The aim of this research is to solve an inverse form-finding problem: construct funicular, axial-only 

structures as close as possible to a target surface defined by the designer. The scope is limited to grid-

like, node-and-branch only networks, which can be solved efficiently using the force density method 

(FDM). This problem is formulated as a least-squares nonlinear optimization problem, and is solved 

using the constrained nonlinear solvers implemented in MATLAB. Two nonlinear constrained solving 

methods, interior-point and trust-reflective region, are found to be the fastest with a large convergence 

domain. The first and second-order derivatives of the objective function are found analytically. Lastly, 

the problem is shown to have several degeneracies; one in particular cannot be removed with physical 

arguments and leads to new insights in the numerical form finding of funicular surfaces. 

Keywords: form finding, funicular structures, optimization, closest fit, force density method. 

1. Introduction 

Compression-only structures are much more efficient than structures where bending occurs. For 

example, in a linear structural element, slender by definition, axial loads are straight forces resisted 

uniformly by the whole section, while bending is a force with a large moment arm resisted by the section 

where only small moment arms exists. Thus, by focusing on funicular structures for a given load, we 

guarantee that all the material will be used with the most efficiency. This explains the significant interest 

in such structures historically and today.  

The compression-only state in a structure is similar to a perfectly flexible chain with no self-weight, 

fixed at both ends with some slack, hanging under the action of weights attached to it. The chain 

undergoes tension only, and if its shape were inverted, it would resist the same loads in a compression-

only state. This principle is at the root of many physical experiments for the form-finding of funicular 

structures, such as Antoni Gaudí’s (1852-1926) hanging models of the Sagrada Família. 

In general, designing compression-only structures is challenging. Physical experiments of hanging 

chains provide a good way to interact and quickly iterate on design options, but lack the precision of a 

CAD model. Computationally, finding the shape of a set of hanging chains requires accounting for 

nonlinear behavior due to large displacements; this problem can be alleviated using the force density 

method (FDM) presented in Schek [1]. However, this only solves a direct problem: finding one discrete 

funicular shape under given loads and grid properties. Often, this goes against the intuitive design 

process where the designer has a shape in mind and wants to minimize bending. That describes an 

inverse problem where the closest possible funicular structure to a target surface is found. 

The aim of this study is to solve one such inverse problem: construct funicular structures as close as 

possible to a target surface. The scope is limited to grid-like, node-and-branch only networks, for which 

an efficient calculation procedure exists in large displacements. In the particular case of grid-like 

funicular structures, this inverse problem is solved in Block and Lachauer [2] using a genetic algorithm. 
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This has the advantage of accepting even badly formatted problems, but remains slow and lacks a 

guarantee of finding a global optimum. The problem receives a more formal treatment in van Mele and 

Block [3] but the scope is limited to pre-tensioned cable nets, for which a good initial estimate of the 

solution is known. This paper expands on this previous work by using gradient-based optimization 

methods to gain more insight into the solutions for such closest-fit inverse problems. 

2. Background 

2.1. Funicular bar networks 

We consider networks of nodes connected by bars, with free rotations at the nodes. This guarantees that 

there are only constant axial forces in the bars. The equilibrium at each node is then only a consequence 

of the position of the nodes. Then for a network of bars intersecting at the nodal positions 𝒙, under the 

loads �⃗� at the nodes and with the objective surface 𝒮, the problem has the form: 

(𝑃): min
x
𝑑(𝒙, 𝑆)2 , such that at all nodes: ∑�⃗� = �⃗�, 

where 𝑑 is a distance measuring the fitness of the points on the surface. This is a convex objective 

function with nonlinear constraints. This is the general closest-fit problem formulation for funicular bar 

networks; the specifics of the distance function 𝑑 used in this research are given in Section 3. 

2.2. Force-Density Method 

The force-density method, introduced in Schek [1], is a method well-suited to explore a large number 

of funicular structures resulting from the same initial bar network. Three assumptions are made: (i) every 

bar is elastically stretched proportionally to the force it carries following Hooke’s law (constitutive 

equation), (ii) the length of a bar is equal to the distance between the nodes that it connects (compatibility 

equation) and (iii) each node is in equilibrium (equilibrium equation). Mathematically, this becomes: 

 {

𝑪𝑁
𝑇𝑸𝑪𝑁𝒙𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒙𝐹 − 𝒑𝑥 = 0

𝑪𝑁
𝑇𝑸𝑪𝑁𝒚𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒚𝐹 − 𝒑𝑦 = 0

𝑪𝑁
𝑇𝑸𝑪𝑁𝒛𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒛𝐹 − 𝒑𝑧 = 0

 (1) 

Here, 𝑪𝑁 is the edge matrix for the free nodes, taking value -1 for the start node of a bar and +1 at its 

end node; 𝑪𝐹 is the edge matrix for the fixed nodes; 𝒙, 𝒚, and 𝒛 are the positions of the nodes; 𝑸 is the 

diagonal matrix of the force densities; and 𝒑 is the vector of all external loads. Recall that the force 

density 𝑞 is the ratio of the force in a bar, 𝑠, to its length, 𝑙: 

 𝑞 = 𝑠 𝑙⁄  (2) 

We set for clarity 𝑫𝑁 = 𝑪𝑁
𝑇𝑸𝑪𝑁 and 𝑫𝐹 = 𝑪𝑁

𝑇𝑸𝑪𝐹. The positions of the nodes solutions to a direct 

problem can then be found using only linear algebra: 

 {

𝒙𝑁 = 𝑫𝑁
−1(𝒑𝑥 − 𝑫𝐹𝒙𝐹)

𝒚𝑁 = 𝑫𝑁
−1(𝒑𝑦 − 𝑫𝐹𝒚𝐹)

𝒛𝑁 = 𝑫𝑁
−1(𝒑𝑧 − 𝑫𝐹𝒛𝐹)

 (3) 

However, finding the solution to an inverse problem, where the target shape is known and the force 

densities are the unknown, is not evident, as there is no clear link between the two. 

2.3. Rationalization of freeform surfaces with funicularity constraints 

As shown above, different choices of force densities naturally lead to different funicular solutions. This 

is a consequence of the linearization of the system of equilibrium equations where, physically, different 
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stiffness is assigned to each bar of the network. If we recall that the initial problem is to solve the 

equilibrium of a bar network, it is cogent that different distributions of stiffness yield different 

equilibrium shapes. We can use these force densities to obtain a funicular network that fits a target 

surface as close as possible. The strategy is illustrated in Figure 1 and formalized in Section 3. 

 

Figure 1: Rationalizing a freeform surface (a): (b) choose numbers of branches 𝑛𝑥 and 𝑛𝑦 in the x and y 

directions, (c) approximate the target surface by projecting the grid vertically and (d) compare to the funicular 

network found using FDM. Then, optimize the force densities to reduce the distance. 

3. Problem Formulation 

To keep the problem tractable, we constrain it from the outset by imposing that the nodes will only move 

vertically from their initial positions. This can be achieved by reducing the number of free parameters, 

i.e. by imposing that each bar of a branch has the same force density. This constraint is derived by 

analyzing the horizontal equilibrium of a single node in a quadrilateral grid. In particular, this means 

that two bars initially aligned must carry the same horizontal force, related to their force density and 

length by eq. (2). Given that we restrict our problem to regular rectangular grid, the lengths of two bars 

belonging to the same branch must thus be equal and so must be their force densities. The matrix 𝑲, 

whose entries are all 0 or 1, is introduced to link the bar force densities 𝑞𝑖’s to the 𝑛𝑥 + 𝑛𝑦 independent 

branch force densities: 

 𝒒 = 𝑲𝒃 (4) 

Since we have restricted our problem to vertical displacements only, we are able to devise a simple 

metric for the distance between a bar network and our target surface. This metric is defined as follows: 

 𝑑(𝒛𝑁) = ‖𝒛𝑁 − 𝒛𝑇‖
2, (5) 

where 𝒛𝑁 is the vector of the z-coordinates of the free nodes of the funicular bar network and 𝒛𝑇 is the 

vector of the target z-coordinates, i.e. the z-coordinates of the grid nodes projected on the target surface. 

3.1. Unconstrained Problem 

The inverse form finding problem is the nonlinear, unconstrained optimization problem formulated as 

follows: 

 (𝑃1): min
𝒃
 𝐹(𝒃) = ‖(𝑫𝑁

−1(𝒑𝑧 − 𝑫𝐹𝒛𝐹)) − 𝒛𝑇‖
2
, (6) 

where 𝑫𝑁 = 𝑪𝑁
𝑇𝑑𝑖𝑎𝑔(𝒒)𝑪𝑁, 𝑫𝐹 = 𝑪𝑁

𝑇𝑑𝑖𝑎𝑔(𝒒)𝑪𝐹, and 𝒒 = 𝑲𝒃. Even though (𝑃1) is not convex for 

all values of 𝒃, convexity can be found and gradient-based methods for solving it are still available if 

the problem is constrained to a smaller domain. 
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3.1.1. Gradient 

To find the gradient of the objective function, we first look for the Jacobian 𝑱(𝒃)  of the function  

𝒇(𝒃) =  𝒛𝑁(𝒃) − 𝒛𝑇. Using the chain rule, we get: 

𝑱(𝒃) =
 𝜕𝒇

 𝜕𝒛𝑁
 
 𝜕𝒛𝑁(𝒒)

 𝜕𝒒
 
 𝜕𝒒(𝒃)

 𝜕𝒃
 (7) 

With 
 𝜕𝒇

 𝜕𝒛𝑁
= 1 ,  

 𝜕𝒛𝑁(𝒒)

 𝜕𝒒
= −𝑫𝑁

−1𝑪𝑁
𝑇𝑾  (from Schek [1]), and 

 𝜕𝒒(𝒃)

 𝜕𝒃
 = 𝑲 , we get:  

𝑱(𝒃) = −𝑫𝑁
−1𝑪𝑁

𝑇𝑾. 𝑾 is the diagonal matrix of the lengths of the bars projected on the 𝑧 axis:  

𝑾 = 𝑑𝑖𝑎𝑔(𝑪𝑁𝒛𝑁 + 𝑪𝐹𝒛𝐹). Finally, the gradient of the objective function is: 

 ∇𝒃‖𝒛𝑁 − 𝒛𝑇‖
2 = −2 𝑲𝑇 .𝑾. 𝑪𝑁. 𝑫𝑁

−T. (𝒛𝑁 − 𝒛𝑇) (8) 

3.1.2. Hessian 

It is also possible to obtain the Hessian of 𝐹(𝒃) in a similar fashion. This derivation, or a similar one for 

equivalent problems, was not found in the literature by the authors. 

𝑯(𝒃) =
𝜕2‖𝒛 − 𝒛𝑇‖

𝜕𝒃2
= 2 ∗

𝜕

𝜕𝒃
((𝒛 − 𝒛𝑇)

𝑇 .
𝜕(𝒛 − 𝒛𝑇)

𝜕𝒃
) 

= 2 ∗ (𝑱(𝒃)𝑇 . 𝑱(𝒃) +∑ (𝒛 − 𝒛𝑇)𝑖 .
𝜕2𝑧𝑖(𝒃)

𝜕𝒃2𝑖
) 

(9) 

We used an explicit summation to lift any ambiguity on the third order tensors contraction. To get 
𝜕2𝒛𝑖(𝒃)

𝜕𝒃2
, we apply the chain rule twice on 𝒃 = 𝒃(𝒒) and note that 𝑲 is constant in 𝒃, to reuse the 

expression of 𝑱(𝒃): 

𝜕2𝑧𝑖(𝒃)

𝜕𝒃2
=
𝜕

𝜕𝒃
(
𝜕𝑧𝑖(𝒃)

𝜕𝒒
.
𝜕𝒒

𝜕𝒃
) =

𝜕

𝜕𝒃
(
𝜕𝑧𝑖(𝒃)

𝜕𝒒
.𝑲) =

𝜕2𝑧𝑖(𝒃)

𝜕𝒃𝜕𝒒
.𝑲 = 𝑲𝑇 .

𝜕2𝑧𝑖(𝒃)

𝜕𝒒2
. 𝑲 

= 𝑲𝑇 .
𝜕

𝜕𝒒
(−𝑫−1𝑪𝑇𝑾)𝑖,.. 𝑲 

(10) 

where (−𝑫−1𝑪𝑇𝑾)𝑖,. is the ith row of 𝑱(𝒃). Then, for each component, using eq. (59) from Petersen 

and Pedersen [4] for the one variable derivative of the inverse of a matrix: 

{
𝜕2𝑧𝛼(𝒃)

𝜕𝒒2
}
𝑖,𝑗

= {
𝜕

𝜕𝑞𝑖
(−𝑫−1𝑪𝑇𝑾)𝛼,𝑗}

𝑖,𝑗

= {[𝑫−1𝑪𝑇
𝜕𝑸

𝜕𝑞𝑖
𝑪𝑫−1𝑪𝑇𝑾]

𝛼,𝑗

}

𝑖,𝑗

 (11) 

Since 𝑸 = diag(𝒒), 
𝜕𝑸

𝜕𝑞𝑖
 is a matrix of zeros with only one 1 on the diagonal in row 𝑖. Then, we have 

𝑪𝑇
𝜕𝑸

𝜕𝑞𝑖
𝑪 = 𝐶𝑖,𝑖

2 = 1 since 𝑪 is made entirely of 1 and −1. We get: 

{
𝜕2𝑧𝛼(𝒃)

𝜕𝒒2
}
𝑖,𝑗

= {[𝑫−2𝑪𝑇𝑾]𝛼,𝑗}𝑖,𝑗
= (

[𝑫−2𝑪𝑇𝑾]𝛼,1
⋮

[𝑫−2𝑪𝑇𝑾]𝛼,𝑛𝑞

)

𝑖,𝑗

 (12) 

Finally by replacing 
𝜕2𝑧𝑖(𝒃)

𝜕𝒃2
 with its value, reorganizing the sum and compacting it to a matrix product: 
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𝑯(𝒃) = 2 ∗ (𝑱(𝒃)𝑇𝑱(𝒃) + 𝑲(
(𝒛 − 𝒛𝑇) . [𝑫

−2𝑪𝑇𝑾]
⋮

(𝒛 − 𝒛𝑇) . [𝑫
−2𝑪𝑇𝑾]

)𝑲𝑇) (13) 

This matrix has a rank deficiency of 1, the consequences of which are discussed in the example problem 

of Section 4.1.1 and in general in Section 3.3. 

3.2. Structure of the unconstrained problem 

In order to gain insight about the problem, the simplest example comprised of four bars and one node is 

analyzed. Although the bar network has four bars, it only has two branches, hence two independent 

force parameters, which will allow us to visualize the objective function. The physical problem is 

presented visually in Figure 2. The goal of the optimization is to have 𝒛𝑁 reach 𝒛𝑇 by modifying the 

independent force densities of the network, namely 𝑏1 and 𝑏2. In this particular problem, it is obvious 

that it is possible to fit a funicular solution to the target since the target is itself funicular. This simple 

problem is thus well-suited not only for understanding the problem but also to test out algorithms. In 

the numerical applications, 𝐿, 𝑊, 𝒛𝑇, and 𝒑𝑧 are respectively equal to 10, 10, 4, and 10. 

  

Figure 2 : The four-bar problem. 

As seen in Figure 3 (a), the problem is nonconvex and has a line of global minima. The level sets of the 

objective function are lines with the following form: 

 𝐹𝛼(𝑏1, 𝑏2) = {
𝑏1 + 𝑏2 = 𝐶𝛼
𝑧 =  𝛼

, (14) 

where 𝐶𝛼 is a constant depending on 𝛼. From the form of the level sets, we see that the gradient always 

has the same direction (1,1); only its scale and sign will change. However, depending on the starting 

point, a computational optimization scheme based on the gradient will not necessarily converge. This is 

particularly clear when looking at the section of the objective surface by the plane b1 = b2. For a starting 

point (𝑏0
1, 𝑏0

2), a gradient-based algorithm will converge only if at all steps: 

 (𝑏𝑘
1, 𝑏𝑘

2) ∈ {(𝑏1, 𝑏2) ∈ ℝ
2| 𝑏1 + 𝑏2 > 0} (15) 

A partial solution to the non-convexity issue is to reformulate our problem and constrain it to the positive 

orthant. This will solve the problem of the choice of the starting point. Moreover, in the four-bar 

example, the plane b1+b2 = 0 is particular because it corresponds to a state of physical instability: with 

these force densities, the bars cannot equilibrate the vertical force. In general, this is a problem that can 

arise if we allow for force densities of different signs. By restricting the problem to non-negative 

densities, the issue is simply avoided. 

3.3. Structure of the constrained problem 

We constrain the base set of problem (𝑃1) to the non-negative orthant, to obtain (𝑃2): 
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(𝑃2): min
𝑏
 𝐹(𝒃) = ‖(𝑫𝑁

−1(𝒑𝑧 − 𝑫𝐹𝒛𝐹)) − 𝒛𝑇‖
2

 

such that 𝒃 ≥ 𝟎 

(16) 

Two details are of importance in the structure of (𝑃2). First, the objective shape is in general not a 

funicular shape so the optimum value will be an unknown positive number. This means that solvers 

cannot be stopped based on the current function value being closed to zero, but only based on the 

improvement in the objective function or the size step. 

Second, as mentioned in section 3.1.2, the Hessian matrix of (𝑃1) has a rank deficiency of 1. The same 

goes for the matrices 𝑪 and 𝑨 = abs(𝑪) of the absolute values of the components of 𝑪. 𝑨 represents the 

indices of the bars connected to each node, or equivalently the indices of the forces acting on each node, 

and so is locally representative of the structure of the possible equilibrium positions. Reordering the 

rows of 𝑪, the structure of 𝑨 can be written: 

 𝑨 =

(

 
 
 
 
 
 
 
 Iny

1 0 0 … 0
⋮ ⋮ ⋮ … ⋮
1 0 0 … 0

⏞          
nx

Iny
0 1 0 … 0
⋮ ⋮ ⋮ … ⋮
0 1 0 … 0

⋮ ⋮

Iny
0 0 … 0 1
⋮ ⋮ … ⋮ ⋮
0 0 … 0 1)

 
 
 
 
 
 
 
 

, (17) 

with 𝑛𝑥 and 𝑛𝑦 the number of independent force density values in the 𝑥 and 𝑦 directions, respectively, 

and supposing 𝑛𝑥 < 𝑛𝑦. This matrix has a rank deficiency of 1, giving an indeterminacy in the FDM 

problem: a linear combination of the independent force densities will give the same result in the final 

shape. Given the structure of 𝐴, one could believe that those equivalent values are in a vector space of 

dimension 1; however, the positions of the nodes at equilibrium are related to 𝑨 and 𝒃 only after 

multiplications by the lengths of the bars to get to forces acting on the nodes. There is no clear structure 

to the set of equivalent independent force densities values. 

This indeterminacy is detrimental to the quality of the optimization processes. At every point one 

direction of the problem will always be flat, so the solver will never search in that direction even though 

it might be on a shorter path to the optimum. Also, it means that solutions exist with unbalanced values 

of the independent force densities. This is also generally unwanted physically – it leads to high 

concentration of forces in certain bars. 

One possible remedy is to remove the indeterminacy by adding the constraint ∑ 𝑏𝑖
𝑛𝑥
𝑖=1 = ∑ 𝑏𝑖

𝑛𝑥
𝑖=1 , 

following the structure of the 4-bar problem. While this works well in the unconstrained problem, it 

stops the algorithm too soon in the constrained problem. In fact, when the algorithm finds an optimum 

on the frontier of one of the inequality constraints and the equality constraint proposed above, it will not 

be able to get away from the barrier in the flat direction at that point to then follow a descent direction 

again. This constraint was not used in the rest of this paper except for part of section 4.2. 

4. Results 

4.1. Steepest Descent Algorithm (SDA) 

In this section, we apply the steepest descent Algorithm 1 to the unconstrained problem. The gradient 

of the objective function with respect to the independent force densities was given by eq. (8). The 

gradient can be used to provide a descent direction; as a matter of fact, it provides the steepest descent 
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direction. The step-size is determined by computing 𝛼𝑘 ≔ 𝑎𝑟𝑔min
𝛼
𝐹(𝑏𝑘 + 𝛼 𝑑𝑘). Hence, in order to 

find to 𝛼𝑘, one has to solve: 

 2 ((𝐷𝑁
−1𝐶𝑁

𝑇𝑊)|
𝑏=𝑏𝑘+𝛼𝑑𝑘

∗ 𝐾 ∗ 𝐽(𝑏𝑘)
𝑇
∗ (𝑧𝑁 − 𝑧𝑇)|𝑏=𝑏𝑘)

𝑇
∗ (𝑧𝑁 − 𝑧𝑇)|𝑏=𝑏𝑘+𝛼𝑑𝑘 = 0 (18) 

No closed-form solution exists in general and we must resort to an approximate line-search by bisection. 

 

Algorithm 1 Steepest Descent Algorithm (SDA) 

Initialize at b0, and set k←0 

At iteration k: 

𝑑𝑘 ≔ −∇𝐹(𝑏𝑘) = −2 𝐽(𝑏𝑘)
𝑇
(𝑧𝑁
𝑘 − 𝑧𝑇) . If  ||𝑑

𝑘|| ≤ 𝜖 , then stop (𝜖 is specified tolerance) 

Choose step-size 𝛼𝑘 (by performing a line-search) 

Set 𝑥𝑘+1 ← 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 ← 𝑘 + 1 

4.1.1. Example 1: 4-bar problem 

We use Algorithm 1 on the four-bar problem introduced in section 3.2. We apply the steepest descent 

algorithm with and without line-search. Our starting point is 𝒃0 = (10,10). 

With the line-search, the algorithm converges in one step, which was expected given the structure of the 

problem. We note however that we had to modify the bisection algorithm as to avoid overshooting past 

the plane 𝑏1 + 𝑏2 = 0, i.e. we had to set an upper bound for the choice of the step-size. Because we 

knew the objective surface beforehand and knowingly chose an easy starting point, this constraint was 

easy to implement as follows: 

 𝛼𝑘 ≤ min (|
𝑏𝑘

𝑑𝑘
|), (19) 

where 
𝑏𝑘

𝑑𝑘
 indicates a component-wise division. Generally, this constraint is not necessarily as easy to 

formulate. This problem is a motivation for constraining the problem to non-negative force densities. 

Without the line-search (arbitrary step-size of 0.001), the algorithm expectedly converges very slowly 

as seen in Figure 3 (b). 

 

(a) 

 

(b) 

Figure 3 : (a) The objective surface with the optimization path (black curve) for the steepest descent algorithm 

with a fixed step-size of 0.001. At every iteration, the direction of the gradient remains unchanged because the 

level sets of the function are parallel lines. (b) Convergence profile of the steepest descent algorithm with a step-

size of 0.001, for the 4-bar problem. 
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Figure 4: Target surface (a) vs. optimum surface found (b). 

4.1.2. Example 2: 10x10-bar problem 

In this example, we deal with a larger dimension problem, i.e. a grid network of size 10 by 10 nodes. 

The target surface and optimum found are presented in Figure 4. Applying the steepest descent algorithm 

with the starting point 𝒃0 = [10…10]𝑇, where 𝒃0 has 20 components, the problem converges to the 

optimum solution (𝐹∗ = 38.1539) in 4213 iterations. Convergence is defined by a relative change in 

the objective value of less than 10−6. Figure 5 (a) shows that the algorithm converges quickly in the 

first 20 iterations but considerably slows downs afterwards. If instead, we use a starting point 𝒃0 =
[1…1]𝑇, the algorithm does not converge. A solution is to set up an arbitrarily low step-size, as in the 

previous example but it results in an exceptionally slow algorithm. Again, these observations motivate 

to switch to a constrained problem. 

4.2. Quasi-Newton Methods 

In this section, we focus on finding a performant algorithm for solving (𝑃2) in the 100 nodes examples 

of section 4.1.2. Looking at the poor performance of the SDA in a realistic problem, we implemented a 

Newton Method (NM) with line-search, Algorithm 2. Because the method relies on inverting the 

Hessian, non-invertible as per section 3.3, it was necessary to enforce the additional constraint ∑ 𝑏𝑖
𝑛𝑥
𝑖=1 =

∑ 𝑏𝑖
𝑛𝑥
𝑖=1 . The constraint is written as an additional line in the Hessian and the gradient is augmented by 

one component equal to 0 to get a well-formed system of equations in the first step of Algorithm 2. 

 

Algorithm 2  Newton’s method (NM) 

Initialize at 𝑏0, and set 𝑘 ← 0. Let 𝜖 > 0 be a given error tolerance. 

At iteration 𝑘: 

1. Set 𝐻𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘) = (

𝐻(𝑏𝑘)
1 ⋯ 1⏟      

𝑛𝑥

−1 ⋯ −1⏟        
𝑛𝑦

), ∇𝐹𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘) = (

∇𝐹(𝑏𝑘)

0
). 

2. 𝑑𝑘 ≔ −𝐻𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘)
−1
∇𝐹𝑐𝑜𝑛𝑠𝑡(𝑏

𝑘). If  ‖𝑑𝑘‖ ≤ 𝜖 , then stop. 

3. Choose step-size 𝛼𝑘 = argmina≥0 𝐹(𝑏
𝑘 + 𝛼𝑑𝑘). 

4. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 𝑘 + 1 

 

(a) 

 

(b) 
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However, given the narrow zone in which the objective function of (𝑃1) is convex, this method only 

converges with a starting point very close to the optimum. In practice, we were only able to obtain 

convergence by using a starting point found as a result of the SDA, stopped when the relative change in 

the objective value was 10−3. 

  

(a) (b) 

Figure 5: Convergence profile of (a) the steepest descent algorithm with an inexact line-search, and (b) of the 

interior-point method for the 10x10 bar problem. 

4.2.1. Levenberg-Marquardt algorithm 

To have a better convergence rate for the final iterations along with a large convergence domain, we 

used the Levenberg-Marquardt algorithm (Levenberg [5], Marquardt [6]) implementation in MATLAB 

[7] for non-linear least-square problems. This is the method used in van Mele and Block [3]. 

The Levenberg-Marqurdt algorithm uses a search direction that is intermediate between the one found 

in the SDA and the one found in NM. A parameter is used to orient the amount by which the problem 

is similar to the SDA or the NM. At the beginning, this parameter is chosen so that the problem is very 

close to the SDA (to get a large convergence region) and is progressively updated to match more closely 

the NM (to get a faster convergence rate). Because the problem is never exactly the NM, the non-

invertible Hessian is not a problem anymore and we can eliminate the additional constraint used above. 

Using this method, we were able to find a solution with the same optimum value as in Section 4.1.2, in 

1585 iterations using the same stopping criterion. However with several values of the force densities 

found are negative, which is unacceptable if we were to build the solution. In consequence, we look at 

constrained solvers to find solutions to (𝑃2) in both reasonable time and large convergence. 

4.3. Solvers for the constrained problem 

Using the solvers implemented in Matlab’s fmincon package, we looked at their relative performance 

for solving (𝑃2) in the 100 nodes example presented in section 4.1.2. The results are compiled in Table 

1. The solvers are always stopped when the relative improvement in objective value is less than 10−6. 

The gradient is given explicitly to the solvers. The Hessian is computed numerically by the solvers, as 

some of them do not accept a user-defined analytical expression for the Hessian. 

Convergence was always obtained when the initial point was a vector of identical independent force 

densities within one order of magnitude (above or below) of the uniform load at the nodes. It should be 

noted that the excellent convergence rate of the Trust region reflective algorithm fades when the 

stopping criterion is made smaller.  
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For the interior point method, the solver quickly gets stuck against a bound and, because it relies heavily 

on the Hessian, does not explore in the flat direction of the problem. When the additional constraint 

∑ 𝑏𝑖
𝑛𝑥
𝑖=1 = ∑ 𝑏𝑖

𝑛𝑥
𝑖=1  is added, we get the convergence as for the other algorithms, this is the result 

presented in Table 1. This explains the different objective value found at the optimum. A typical 

evolution of the objective values using the interior-point method is depicted in Figure 5 (b) for a “bad” 

starting point. 

Table 1: Performance comparison of constrained nonlinear solvers in the 100 nodes example. 

(*An additional constraint was added to the interior point method.) 

Algorithm Iterations Function calls Objective value 

Interior point* 887 1070 38.2510 

Sequential Quadrating 

Programming 

923 1431 38.2356 

Trust region reflective 28 29 38.2356 

5. Conclusions 

In this paper, we analyzed the structure of a closest-fit inverse form-finding problem for funicular 

structure. Using the force density method framework, we optimized the force densities of a bar network 

to reach a target surface. We formulated the problem first as an unconstrained optimization problem and 

calculated the analytic expressions of the gradient and Hessian of the problem. Based on this, we applied 

the steepest descent algorithm on a 4-bar problem. The insight gained from this analysis motivated the 

introduction of a non-negative force densities constraint. The constraint was dealt with computationally 

by using nonlinear constrained optimization methods that proved effective, especially the interior point 

and trust region reflective methods. We note that, for particular surfaces, the constraint will yield 

solutions that are sub-optimal compared to solutions of the unconstrained problem. Yet, both for 

physical and for computational stability motives, the constraint introduced is useful. 

Future work should be focused on handling realistic construction constraints, for example limits on the 

forces in the bars or smaller deviations of those forces. Looking at self-weight funicular structures, 

where the applied load is a function of the geometry of the shell, is also promising. Finally, the 

optimization strategy presented in this paper could be integrated in a user-guided design tool used by 

designers to directly create and interact with funicular structures. 
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