
1 INTRODUCTION 

In the current era of architectural and structural design, computational and numerical methods 
have expanded the shapes and forms designers are able to analyze and build. However, the soft-
ware that has enabled this freedom is also largely responsible for removing considerations of 
performance from the early design phase. Since architects are now able to model complex ge-
ometries computationally without reference to gravity or other considerations, a typical work-
flow of architects coming up with conceptual designs before passing them off to engineers and 
other specialists for analysis has become commonplace.  This process, along with the accompa-
nying difficulty in translating between different software models, severely limits the ability of 
designers to create a performance feedback loop that influences overall building forms.  As a re-
sult, sophisticated techniques such as structural optimization, which can reduce the cost and em-
bodied energy of a building design, are often not used in the design process. 

Furthermore, architects must simultaneously consider a variety of design objectives early on 
in the process, including ones than can be quantified, such as structural and energy efficiency, as 
well as others that cannot, such as aesthetic expression.  Many of these objectives may trade off 
with one another, meaning an optimization process would require designer intuition and input to 
make overall design decisions. In order to facilitate better designs on a holistic level, optimiza-
tion techniques must help designers navigate a complicated design space by providing function-
ality for searching through many designs options, prioritizing different objectives, and present-
ing rapid and reasonably accurate performance feedback. Multi-objective optimization (MOO) 
is a methodology designed for this purpose, and if used appropriately, it can account for design-
ers’ needs and guide them towards high performing solutions in conceptual design.  
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ABSTRACT: In conceptual building design, an architect must simultaneously consider a variety 
of design objectives, including structural efficiency, total energy usage, and aesthetic expres-
sion. Multi-objective optimization (MOO) has been demonstrated to adequately account for de-
signers’ needs and guide them towards high performing solutions early in the design process. 
However, conceptual building designers seldom use MOO in practice, and although the use of 
parametric design tools is widespread, these tools rarely give rapid, multidimensional perfor-
mance feedback to guide design exploration.  In response, this paper describes relevant MOO 
methods and discusses how architects and engineers can use them to generate diverse, high-
performing designs.  It also introduces a number of computational tools that support MOO im-
plementation and are embedded in traditional parametric modeling software.  Finally, this paper 
presents a design case study of a cantilevered stadium roof to show how designers can effective-
ly set up and navigate an architectural design space. 



MOO is commonly applied in fields as diverse as finance and aerospace engineering, and re-
searchers have developed a wealth of methods and algorithms to apply to various problems.  
Moreover, parametric modeling is already a commonly used tool in many architectural design 
firms, which lends itself to optimization. Yet for complex problems with high dimensional de-
sign and objective spaces, current architectural design tools lack the functionality and accessibil-
ity necessary for enabling widespread use of MOO techniques.  Many conceptual designers also 
have little experience with setting up and using multi-objective workflows, since their develop-
ment has been geared more towards pure engineering problems than expressive architectural de-
sign.  In addition, specific architectural problems or designers themselves might require or pre-
fer a wide range of techniques within the broader field of MOO.  Thus, there is a need for 
research contributions that address the accessibility, ease of use, and flexibility of MOO pro-
cesses for aiding conceptual designers in their search for diverse, creative forms. 

2 LITERATURE REVIEW 

2.1 Multi-objective optimization for conceptual design 

Many initial contributions towards creating accessible, interactive optimization tools that con-
sider aesthetics and other non-quantifiable objectives come from the field of structural engineer-
ing.  Mueller & Ochsendorf (2015) created structureFIT, while von Buelow (2012) developed 
ParaGEN. The fields of mechanical, aerospace, and product design have also contributed signif-
icantly to the theory and application of MOO or Multidisciplinary Design Optimization (MDO), 
which is related.  These contributions including many numerical optimization techniques 
(Vanderplaats 1999), overviews of simplified optimization workflows for engineering (Arora 
2004), and the concept of isoperformance (de Weck & Jones 2006).  

Other researchers have proposed and tested MOO workflows specifically for architectural 
design.  Asl et al. (2014) establish and test an optimization method for whole building energy 
performance and daylighting.  Flager et al. (2009) present a methodology and case study results 
for MOO while considering structure and energy as objectives. Krem et al. (2013) use MOO to 
study floor plan shapes and the location of the structural core.  Quaglia et al. (2014) generate a 
Pareto optimal solution set for origami-inspired, rapidly deployable shelters.  Mendez 
Echenagucia (2013) presents shape optimizations for a number of competing architectural per-
formance objectives.  Although these research contributions show the immense potential of 
MOO for use in design, few are focused on how conceptual designers can easily and interactive-
ly apply MOO to arrive at satisfying design solutions.  Many proposed workflows also require a 
lengthy setup and computationally intense simulations, or complicated information transfers be-
tween multiple pieces of software, which may be beyond the scope of some designers.  
 

2.2 Existing tools 

A number of computational tools that can facilitate some MOO techniques have already been in-
tegrated into typical conceptual design environments.  Both evolutionary and gradient-based 
solvers exist in parametric software, including Galapagos and Goat for Grasshopper. The Core 
Studio at Thornton Tomasetti has developed TT Toolbox and Design Explorer, which include a 
range of different computational tools that may be useful, such as a brute force solver for enu-
merating the design space and various visualization components. Another plug-in for Rhino, 
called Octopus (Vierlinger), was designed to apply evolutionary principles to parametric design 
problems with multiple objectives.  It incudes features such as searching for tradeoffs, forcing 
diversity of solutions, changing objectives during a search, and visualizing and exporting results.  
A lighter version, named octopus.E, allows users more flexibility in picking and choosing only 
some of these functions.  A similar tool, called Optimo (Rahmani), has been implemented for 
the parametric modeling plug-in Dynamo, which interfaces with many different pieces of archi-
tecture and engineering software.  Users of Optimo can also use multi-objective evolutionary al-
gorithms to help explore tradeoffs and generate optimal designs within a design space. 

 



2.3 Research contributions 

Some of these existing tools take an all or nothing approach to implementation of MOO, which 
limits flexibility for designers that prefer particular methods.  Many also require sophisticated 
software knowledge to implement an efficient workflow for moving through a design space and 
selecting the best options.  This greatly reduces the number of designers that can use MOO ef-
fectively, or at least increases the time and effort a designer must spend to consider perfor-
mance.  Ideally, future implementations will be as integrated as possible with typical conceptual 
design software, while building on the functionality of existing tools to create systematic work-
flows for applying potentially useful MOO techniques. In response, this paper describes a num-
ber of multi-objective optimization methods and discusses how conceptual designers can most 
effectively interact with them, while also considering how specific aspects of each method affect 
the eventual design solutions it generates.  It also introduces a number of computational tools 
that support MOO implementation in traditional conceptual design software.  Finally, a design 
case study of a cantilevered stadium roof is presented, giving visualizations associated with each 
interaction mode and illustrating how designers can use these methods to formulate a design 
space and select a best design.  

3 DESIGNER INTERACTION WITH OPTIMIZATION 

3.1 Free exploration with performance feedback 

The first method for integrating performance feedback into the conceptual design phase is simp-
ly providing performance “scores” onscreen while a designer is interacting with a parametric 
model.  This method depends on the designer to prioritize objectives and weigh tradeoffs with 
only the most basic computational assistance.  However, due to the reliance on user intuition to 
move towards better performing designs, this method allows for complete design freedom with-
in the parametric model.  In an architectural workflow, it only requires evaluation methods for 
each dimension of performance, rather than additional optimization algorithms, and it most 
closely replicates a traditional parametric workflow by using sliders or other means of paramet-
ric navigation. 

3.2 Composite functions 

A second prominent method for multi-objective optimization is to form a composite objective 
function of the weighted sum of the objectives.  In this method, the weight of each objective cor-
responds to a preference factor assigned to that particular objective (Deb 2001).  Although this 
greatly simplifies the problem by reducing it to a single objective optimization and opening up 
the possibility of a single best solution, a user must still decide on these preference weights.  In a 
conceptual design scenario, a designer would likely have to try a number of different weight 
combinations to arrive at a satisfying design.  This can be done systematically through sampling, 
or interactively as part of a creative process.  Special care must be given to architectural prob-
lems in which different objective functions have vastly different units or sensitivities, as certain 
objectives or combinations of correlating objectives can dominate the problem. 

3.3 Sampling, Pareto optimal design sets, & other methods 

Broadly speaking, the most common methods for multi-objective optimization require two main 
steps: finding multiple tradeoff solutions with a wide range of objective values, and choosing 
one of the obtained solutions using higher level information (Deb 2001).  One of the most effec-
tive methods for first finding the range of best possible solutions uses the concept of Pareto op-
timality.  There are a number of ways to determine or at least approximate the Pareto front of an 
objective space.  The first is to brute-force sample the entire design space and use a Pareto-
culling function after each design has been evaluated.  The sampling can be random, on a grid, 
or use a more sophisticated algorithm.  One advantage of sampling is that it can generate many 
different designs a certain distance away the Pareto front, but that an architect may want to con-
sider for non-performance reasons. However, brute-force sampling can waste considerable com-



putational time exploring large portions of the design space that are poor performing.  The other 
method is to use an evolutionary algorithm such as the NSGA-II that approximates the Pareto 
front more quickly by breeding progressively higher-performing generations (Deb et al. 2002).  
 Another technique that loosely fits in the family of multi-objective optimization sampling is 
single variable sampling, where a designer changes one particular design variable while holding 
all others constant, and then visualizes the performance.  This technique is useful when there is a 
preferred design, determined through some immeasurable architectural criteria, and designers 
wish to understand the importance of each variable to the problem and the direct effect of 
changing one of these variables from a given starting point.  When the range of this single vari-
able is plotted against each objective function, the slope of the objective function can indicate 
how sensitive it is to that particular variable. Other promising workflows exist, but many of 
them are a combination of the ones already mentioned, such as sampling different preference 
weights in a composite optimization. Thus, the methods listed in this paper are not exhaustive, 
but provide a useful overview for designers considering MOO in conceptual design. 

3.4 Tools to facilitate these interaction modes 

Although various workflows exist for each of these MOO techniques, they often require multi-
ple transitions between software and manual manipulation of data. This section introduces a 
suite of tools created within Rhinoceros that are designed to work together to facilitate various 
MOO methods. Figure 1 gives a flowchart describing the connectivity of the developed compo-
nents.  Components 1-4 have been used in various research, teaching, and design exercises, but 
components 5 is still in development.  Component 1 reads in design variables and their ranges 
and generates a list of design vectors that represent the design space.  Geometry generation and 
objective functions are design specific, and must be set up individually by the designer.  Com-
ponent 2 records screenshots and performance, while component 3 contains an implementation 
of the NSGA-II MOO algorithm for use in parametric design (Durillo & Nebro 2011). Compo-
nent 4 uses surrogate modeling to approximate computationally intense objectives, and compo-
nent 5 helps organize and visualize overall design data for inspection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Process flowchart for implementing an MOO workflow using tools developed by the authors  

4 CASE STUDY DEMONSTRATION: A CANTILEVERED STADIUM ROOF 

4.1 Design space formulation 

The potential outputs and utility of these interactive optimization methods will be demonstrated 
through their application to the architectural design problem of the cantilevered stadium roof.  
The cantilevered stadium form is commonly found at racetracks or other programs that require a 
covered grandstand. Many examples of a creative structural solution to this problem exist, in-
cluding the reinforced concrete design of the Zarzuela Hippodrome. However, this paper utilizes 
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a steel truss that sits on two columns supports and cantilevers out over the crowd seated below 
(Fig. 2). A parametric model of a cantilevered roof was created using Rhinoceros and Grasshop-
per. The model is made of a mixture of 2D and 3D geometry. The structural truss represents one 
section of the roof, corresponding to a single set of columns. The actual design would include a 
number of these trusses arrayed longitudinally with additional elements spanning between the 
trusses, but the reduction of parts of the problem to 2D allows for faster evaluations.   

Four design variables drive the parametric logic of the truss: overhang length, backspan 
length, truss depth ratio denominator, and height of the free edge.  These variables were selected 
because they generate the overall geometry of the roof in a way that allows for design variables 
to clearly effect performance in multiple architectural objectives.  The truss model is projected 
onto the existing geometry of a crowd seating area and a hospitality suite above, which were 
previously dictated by the program of the stadium.  It is assumed that the surfaces of the roof 
roughly follow the outer chords of the truss, although a slight offset at the tip location was creat-
ed to allow for bullnose detail on the edge of the roof. 

 
  
 
 
 
 
 
 
 
 
Figure 2. Geometric description of the design space for the cantilevered roof design case study  
  
Table 1. Design variables for the case study  ___________________________________________________________________ 
Variables            Lower Limit    Upper Limit          ___________________________________________________________________ 
Overhang Length        20 m     30 m 
Backspan Length        17 m     25 m 
Truss Depth Ratio Denominator      5         9 
Free Edge Height         0 m      4 m ___________________________________________________________________ 

4.2 Objective function selection and optimization 

Four different performance objectives were selected for the multi-objective optimization process 
(Table 2).  The evaluations functions used for each objective were simplified so that the interac-
tion with the model yields nearly real time feedback.  Although some of the MOO methods de-
scribed above can be applied to models with longer evaluation times if an automated way of col-
lecting results is established, the methods that require interactive articulation of design 
preferences require fast evaluations. The first objective is structural weight, where a design that 
uses the least amount of steel is considered to be optimal.  To determine this weight, a finite el-
ement model of the truss was created using Karamba, which is a plug-in for Grasshopper.  Ka-
ramba’s sizing functionality was used, which reads in the applied loads, runs an analysis, and 
determines the smallest section size for each element that can provide adequate capacity to resist 
forces and buckling.  

The second objective is rain protection, which is measured as the percentage of the crowd that 
would not be touched by blowing rain at a given windspeed and orientation.  Although a compu-
tational fluid dynamics simulation could give a more accurate profile of blowing rain penetra-
tion into the crowd based on drop size, the effect of this penetration can be approximated geo-
metrically by drawing a line from the tip of the roof at an angle based on the wind speed and 
droplet vertical velocity.  In addition to rain protection, the shaded area of the crowd was also 
calculated and considered as an objective function, but this metric was deemed too similar to 
rain protection and less important in certain climates.   
 



The third objective is sound dispersion.  Acoustics in architecture is a complex field, and 
measurement of acoustic performance can be difficult to reduce to a single geometric objective 
function, especially since material selection often matters more than shape. However, it was as-
sumed for this design that sound dispersion was desirable, and a flat or concave shape to the un-
derside of the roof would be worse than an open, convex shape.  

The final objective involves daylighting in the hospitality suites above the seating area, which 
is affected by the shape of the roof.  A number of different evaluations and tools were consid-
ered for this metric, including those that run full annual simulations or calculate a daylight factor 
for one specific date and time.  In the end, it was decided that the portion of sky visible from the 
hospitality suite, which can be calculated geometrically, was an acceptable approximation.   

Using a combination of existing software, native Grasshopper functionality, and custom tools, 
each of the potential MOO workflows for design was implemented on the model of the cantile-
vered stadium roof. The limits of the design space for this problem were based on ranges con-
sidered acceptable from an aesthetic point of view, and the performance outputs were normal-
ized, with the worst possible performance receiving a normalized score of 0, and the best 
performance receiving a score of 1.   

 
Table 2. Objective function assumptions  _________________________________________________________________________________________________________ 
Objective         Metric          Evaluation Method        _________________________________________________________________________________________________________ 
Structural Efficiency  Weight of steel (min)        FEM + Member sizing 
Rain Protection    Portion of crowd protected (max)    Intersection: rain trajectory and seats  
Sound Dispersion    Angle of lower truss chord (max)    Geometric measurement 
Portion of Visible Sky  Angle of line: hospitality to roof tip (max) Geometric measurement _________________________________________________________________________________________________________ 

4.3 Results and Visualizations 

The most basic methods for interacting with multi-objective feedback are real-time model ma-
nipulation or sampling the design space to set up a catalogue of generated designs.  A small ex-
ample catalogue for the cantilevered stadium is given in Figure 3, and it contains a glyph of the 
roof truss and a few typically used performance data visualizations.  This type of glyph com-
municates information rapidly and visually and is appropriate for comparing all sorts of designs 
in which the variables are primarily geometric.  Although this catalogue is presented statically 
on a page as separate design options, these visuals could be made interactive and dynamic using 
the tools introduced in Section 3.4.  In this case, the graphics would update automatically during 
free parametric exploration, depending on the evaluations, and allow the designer to weight ob-
jective importance, test performance sensitivity, and consider aesthetics of the design while us-
ing intuition to drive towards a satisfying design. 
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Figure 3. Example design catalogue 
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If a composite function is used instead, the different objective weights could be projected on-
to standard glyphs and visualizations.  As illustrated by the cantilevered roof examples in Figure 
4, performance in certain dimensions may be easy to obtain without significant weighting, sug-
gesting that there are objectives (such as sound dispersion) that are largely independent and do 
not have major tradeoffs.  Other objectives may dominate the composite function if a significant 
portion of the design space has high performance in that single dimension, depending on the 
normalization method used.  Designers might also notice that certain objectives correlate closely 
with others (such as sound and sky), and could be eliminated from the problem.  Since each of 
the objectives are quantified in vastly different ranges and units, a designer can use this compo-
site function MOO optimization technique to test various tradeoffs, correlations, and sensitivi-
ties. This process can be done gradually to build intuition about the design problem or systemat-
ically to generate more design options, but it ensures that each selected design is optimal for a 
particular combination of designer preferences, ultimately leading to a successful design. 

 
 
 

 
 
 

 
Figure 4. Optimal designs using different objective functions 

 
Another typical visualization, especially useful while exploring a sampled design space or a 

generated Pareto front, is to plot the objective space with each design represented as a point.  
When more than three objectives exist, this can be done using projections to various bi-objective 
plots, such as the ones shown in Figure 5. At this scale, only the trends can be viewed effective-
ly, but these plots could be made interactive in a parametric design workflow so that a user 
could click on one design and have it highlighted on every other plot.  Overall, these plots give 
context to the set of highest performing designs, as well as indicating clear correlations (visible 
light and sound dispersion), almost linear tradeoffs (rain versus both of these), and curved Pare-
to fronts (structure and rain protection).  By setting up a Pareto front, a conceptual designer is al-
ready moving towards high-performing designs, but likely has a variety of visual options to 
choose from within the set. In the case where a designer already has a preferred design for aes-
thetic, geometric, or other reasons, single variable sampling can prove useful.  This technique, 
sometimes called one at a time analysis, can show the relationship between design variables and 
performance sensitivities by visualizing the performance gradient at a particular point (Fig. 6).   
 
 
 
 
 
 
 
 
Figure 5. Automatically generated Pareto fronts for the cantilevered roof design example 
 
 
 
 
 
 
 
 
 
 
Figure 6. Results of a single variable sampling exercise for a preferred design within that design space 



5 FUTURE WORK & CONCLUDING REMARKS 

Currently, many of these generated visualizations require the export of data from the parametric 
modeler to another tool.  Extensions to the already completed tools, which are being developed 
by the authors and are presented in Section 3.4, would add this functionality as its own interface 
within the parametric modeler.  Another significant consideration when applying MOO is com-
putational speed, which can limit interactivity. In light of this, the authors are currently develop-
ing and testing surrogate modeling tools for evaluations created in parametric modelers. These 
tools will approximate longer simulations with a less accurate but much faster evaluation, ena-
bling free play, composite functions, and generally enhancing overall interactivity.   

This future work will build on the contributions of this paper, which has discussed multi-
objective optimization methods that are well within reach of conceptual designers who are al-
ready using parametric design tools.  This paper has also presented a number of computational 
tools developed to facilitate these methods, while demonstrating their usefulness through visual-
izations, which are fundamental to interactive design methods that must consider and balance 
both quantitative and qualitative design goals.  These contributions have the potential to encour-
age more widespread and effective usage of MOO in architectural and structural design.  
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