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Abstract 
This paper focuses on optimizing beams made of solid timber sections through a CNC subtractive 
milling process. An optimization algorithm shapes beams and reduces the material quantities by up to 
50% of their initial weight. A series of these beams are then fabricated and load tested, and their strength 
is compared to standard timber sections. 
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1. Introduction 
In a world of limited resources, engineers and architects cannot fail to optimize material usage and 
energy in structures. The building sector contributes to approximately 40% of the global greenhouse gas 
emissions (EIA [1]). The energy consumption in building is divided between operational and embodied 
energy. The operational energy is the energy consumption over the entire lifespan of a building that goes 
into cooling, heating, lighting, etc. The embodied energy is the necessary energy to construct the 
building, such as the manufacturing of structural materials, transportation of building components, etc. 
There are two pathways for designers to reduce the embodied carbon in buildings: material minimization 
and low embodied carbon materials. The low embodied carbon structural material pathway aims to use 
more environmentally efficient structures such as timber or masonry (De Wolf [2]). Structural 
optimization achieves material savings with more efficient use of material through geometrical and 
topological changes (Spillers and McBain [3]). While this often results in shapes difficult to build, digital 
tools are increasingly offering possibilities to build complex structures at marginal added costs. 

A key opportunity for material savings in buildings lies in structural components in bending, especially 
in beams. Bending is the least efficient structural action, compared to pure tension and compression.  
However, bending is ubiquitous in the built environment as it allows for spans with flat floors and roofs, 
and easily resolved support conditions. In this context, beam shaping appears to be an efficient structural 
design method to save materials (Allen and Zalewski [4], Engel [5]). Connected to modern fabrication 
methods as such as additive or subtractive manufacturing, shaped beams could significantly reduce the 
amount of material used in buildings. Finally, reducing the weight of bending systems has the potential 
to reduce dead loads and hence the size of the columns and foundations for multistory or high-rise 
buildings. 

This paper explores old and new techniques for shaping beams. The scope is limited to simply supported 
timber beams, using subtractive manufacturing. The first part reviews current research and structural 
optimization methods for beam shaping. The second part describes the analytical and computational 
design used in this paper. The last part presents fabrication and load testing results on prototypes. 
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2. Literature review 
In 1638, Galileo Galilei discovered the action of bending stresses in cantilever. With this, he explored 
the possibility of shaping beams according to the stress distribution. For a cantilever with a single point 
load at the tip, the beam takes the shape of a square root function (Timoshenko [6]). 

 

   

a b c d 

Figure 1: a, b: Galileo’s study on the shape of a cantilever beam in his 1638 publication, Timoshenko [6], c: 
simply supported beam optimized for weight, P. Samyn [7], d: topology optimization of a cantilever with point 

load at tip [8]. 

More contemporary research has investigated the analytical solutions for simple beams (Samyn [7]). In 
this case, the analytical equations for different loading cases and beam geometries are solved. Although 
offering a wide range of interesting optimal designs, this results in either theoretical shapes difficult to 
build or geometries unfit for buildings, as little control can be applied on the shape. 

A wide range of numerical tools and methods has been developed for structural optimization. 
Topological optimization of structures solves the problem of distributing a finite quantity of material 
within a given boundary to achieve a structural goal (Bendsoe and Sigmund [9]). While current tools 
offer interactive design tools for designers (Aage et al. [8]), the resulting geometries often require post-
processing and rationalization for construction. Moreover, the designer has little control over the final 
shape of the structure. On the contrary, structural shape optimization optimizes the geometry of a 
predefined topology. While this has many advantages for constructability, the design space is more 
restrained. In literature, this method has been used to form find shell structures, for example. In this 
case, the shell geometry is defined by a series of Non-Uniform Rational Basis Splines (NURBS) or 
NURBS-surface. The control points of the 3D curves are used to modify the geometry under a set of 
constraints in order to minimize an objective function with an evolutionary algorithm (Cui et al [10]). 

Beam shaping linked to fabrication methods and specific materials has been used in current research as 
a means towards producing more efficient structural elements. Fabric formwork for optimal concrete 
structure has gained a lot of popularity in recent years (West [11]), using the same NURBS-based 
approach. The hydrostatic pressure of the fresh concrete forms the fabric into an optimized beam shape. 
This requires an adequate control of the boundary conditions and the pattern of the fabric. While the 
method enables to build efficient structural shape simply with very little formwork, the final shape of 
the beam is governed by the hydrostatic pressure action and the boundary conditions of the fabric 
formwork. More generally, custom timber formwork has been used to build shaped concrete beams. 
However, optimal geometries are difficult to achieve with straight wood boards or panels. CNC-milled 
formwork or curved panels are certainly possible, but at a higher cost premium. 

In conclusion, optimization methods are available to improve the efficiency of structures. While work 
exists in beam optimization for concrete and steel sections, little has been done to link these techniques 
with structural timber. 
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3. Methodology 
This section investigates the use of analytical solutions for beam shaping and then proposes a numerical 
approach. For the scope of this paper, a simply supported beam with a point load at its center is 
considered. The optimization aims to reduce the structure’s volume. 

3.1. Analytical and computational design 
Two methods are used for the beam section optimization. The first one derives the shape of the beam 
using analytical solutions, inspired from G. Galilei and refers to the traditional optimization theory 
(Haftka and Karnat [12]). The second method uses computational structural shape optimization. 

3.1.1. Analytical beam shaping for constant stress 
The equation of the bending stress σ(x) along the beam axis, given a moment distribution for a 
rectangular-sectioned beam of width b and height h is as follow:  

 𝜎𝜎(𝑥𝑥) = 6𝑀𝑀(𝑥𝑥)
𝑏𝑏(𝑥𝑥)ℎ(𝑥𝑥)2 (1) 

where M(x) is the bending moment along the beam axis. The unknowns in the equation are b(x) and 
h(x). With only one equation, one of the parameters has to be fixed in order to solve for the other. The 
bending stress is set such as σ=σmax, allowable. 

If the width is set constant b(x) = b, it can solved for h(x): 

 ℎ(𝑥𝑥) = �6𝑀𝑀(𝑥𝑥)
𝑏𝑏𝑏𝑏 

 (2) 

If the height is set constant h(x) = h, it can be solved for b(x): 

 𝑏𝑏(𝑥𝑥) = 6𝑀𝑀(𝑥𝑥)
ℎ2𝜎𝜎 

 (3) 

The last option to solve the equation (1) is to fix the aspect ratio of the cross section h(x) = f(x)b(x), 
where f(x) is a non-zero function. Contrarily to above, the designer has more control on the shape of the 
beam with the choice of the function cross sectional ratio function f(x). For a constant cross-section 
aspect ratio function, the generated volume does not always fit in the initial bounding box and is 
therefore not used for the following comparison. 

Figure 2 compares the two analytical methods and their relative savings to the initial bounding box. The 
considered system is a simply supported beam, with a point load at mid-span. In each case, the shear 
stress contribution was added (influences the height close to the supports). The span is 1 m, the load 2.5 
kN, the maximal elastic bending stress 5.34 N/mm2 and the shear stress 0.9 N/mm2. The initial cross 
section is 13.97 cm by 3.87 cm. This corresponds to a 2 by 6-inch (nominal) section of low-grade timber 
Spruce-Pine-Fir South (SPFs). Since the solution using the cross-section aspect ratio function varies 
with the input function and doesn’t fit in the initial bounding box, it is not used for comparison here. 
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Figure 2: Optimized beams with varying width or height 

It is interesting to note that shaping the width of the beam, starting from an initial bounding box, is more 
efficient in reducing the weight than shaping the height. In fact, the height contributes more to the 
resistance (h2). If the full height is conserved, more volume in the width can be removed. 

While displacement can be the determining factor in timber structures, the displacement constraint has 
not been implemented for the scope of this paper. 

3.1.2. Numerical optimization method 
The numerical method developed in this paper is an extension of the previous examples ([10], [11]). 
The general strategy used here is a parametric variation of the beam’s width and height along its axis. 
The method is implemented using the 3D modeling software Rhinoceros 5 [13] and Grasshopper for 
Rhino5 [14]. 

3.1.2.1. Geometrical model 
The beam section is defined with a set of three dimensional curves. The beam’s x axis is divided into 
points. Each point is contained by a plan perpendicular to the beam’s main axis. In this plan, a set of 
points is defined parametrically by its (y, z) coordinates. The initial bounding defines the upper and 
lower bound of the variables. A curve is interpolated between the corresponding points of the planes, 
which are then used as control points (3rd degree curve). The entire volume is defined by the number of 
divisions in the beam’s axis and the number of division in the section’s height. A volume is lofted 
between the curves to generate the beam’s volume. The use of symmetry at the center of the beam and 
in the cross section enables the reduction of the number of variables. Cross-sectional properties are 
extracted with the Rhino built-in command for beam slices along the volume’s axis. From the section 
properties, the bending and shear stress distribution can be computed using the general following 
formulas: 

 𝜎𝜎𝑏𝑏𝑏𝑏𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀(𝑥𝑥)
𝑊𝑊(𝑥𝑥)  𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉(𝑥𝑥)

𝐴𝐴𝑉𝑉(𝑥𝑥) (4) 

With M(x) the moment distribution, W(x) the section modulus along the beam axis, V(x) the shear 
distribution and Av(x) the shear area at point x. By varying the y and z coordinates of the control points, 
the beam volume can be linked to an optimization algorithm. 
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Figure 3: Generation of the beam volume for the optimization. A: shaping height only with symmetry at the 
center. B: Shaping width only, with mirroring of the cross-section. C: Shaping height and width at the same 

time. The quarter of the beam is mirrored twice. 

The different numerical shaping methods are illustrated in Figure 3. The first method shapes the beam 
in height only (A), here exemplified with 6 variables. The second method (B) enables the section’s width 
to vary, but the height remains constant (shown here with four variables). Finally, the last method (C) 
allows to vary the width and the height of the beam along its axis. In this third example, 12 variables for 
the width and three variables for the height are used. If the beam defined by the bounding box is designed 
for the maximal load that the shaped beam has to support, the cross section at the center can be fixed to 
its maximal to reduce the number of variables. Furthermore, the section can be defined with an 
additional symmetry axis to further reduce the number of constraints and increase the definition of the 
shape. However, this implies that the beam is not flat at the top. 

3.1.2.2. Optimization 
An optimization algorithm minimizes the beam’s volume under a set of constraints. 

 min𝑊𝑊(𝑥𝑥)(1 +∑𝑃𝑃(𝑥𝑥)) (5) 

where W(x) is the material volume, and ΣP(x) is sum of the penalty jump functions, illustrated here in 
the case of the bending stress as: 

 𝑃𝑃(𝑥𝑥) = �
0 if 𝜎𝜎(𝑥𝑥) < 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

108 if 𝜎𝜎(𝑥𝑥) ≥  𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 (6) 
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P(x) can be extended to more general constraints that include displacement limits, for example. The 
coordinates of the control points along the beam axis define the design space of the optimization 
problem. The coordinates are bound by an initial volume. The problem is generally defined with 6 to 30 
variables. The global evolutionary solver (CSR2) of Goat (Flöry et al [15]) for Grasshopper is used to 
run the optimization. Once a satisfactory solution is found, the local quadratic approximations solver 
(BOBYQA) of the same plugin is used to further refine the solution. 

3.1.3. Short Discussion and comparison 
For a given initial beam volume, the different shaping methods are compared. The chosen material 
properties are σbending=5.34 N/mm2, P=2.5 kN, the span is 1 m. The final volumes of the beam are 
compared in the following table: 

Table 2: Comparison of the volume savings for the analytical and NURBS-based approaches for a simply 
supported beam with point load at mid-span.   

Initial 
volume 

Analytical solution Numerical Solution 

Varying 
height 

Varying 
width 

Varying height 
(5 variables) 

Varying 
width 

(5 variables) 

Varying height and width 
(13 variables) 

3 planes of symmetry 

100% 66.9% 55.3% 68.7% 57.5% 49.3% 
 

 
Figure 4: Optimized beam using the numerical approach where width and height are shaped at the same time. 

The weight is reduced by more than half of the initial volume. 

From the results, we see that the numerical approach is very close to the analytical results when 
comparing the same cases. However, a more refined version, with more variables, would get closer to 
the analytical solution. 

In this model, the shear stress model is simplified and the material is considered to be a homogenous 
elastic material. In order to apply this method to timber beams, the idealized beam model needs to take 
into consideration limitations due to the material properties of timber and the fabrication method. 

3.2. Adjusting to timber fiber properties 
In order to take into account the weakening due to the fiber discontinuity in the wood on the cut side, 
the equation based on Hankinson [16] and Kollman [17] is used for the cut side of the beam in tension. 
The angle between the fiber and the cut direction is extracted from the geometry. 
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𝑓𝑓𝑡𝑡,𝛼𝛼 = 𝐶𝐶𝑡𝑡,𝛼𝛼  𝑓𝑓𝑡𝑡,∥ (7) 

𝐶𝐶𝑡𝑡,𝛼𝛼 = 𝑓𝑓𝑡𝑡,⊥
𝑓𝑓𝑡𝑡,∥ sin(𝛼𝛼)2+𝑓𝑓𝑡𝑡,⊥ cos(𝛼𝛼)2 (8) 

𝑓𝑓𝑡𝑡,𝛼𝛼: resistance outside the main fiber direction, at 
an angle α. 

𝐶𝐶𝑡𝑡,𝛼𝛼: reduction factor. 

𝑓𝑓𝑡𝑡,∥: resistance in tension, parallel to the main 
fiber direction. 

𝑓𝑓𝑡𝑡,⊥:  resistance in tension, perpendicular to the 
main fiber direction. 

Figure 5: Reduction factor for timber loaded diagonally to of the main longitudinal axis (fiber axis). 

3.3. General fabrication constraints 
Although current digital fabrication tools are very versatile and allow designers to construct a wide 
range of design more simply, these fabrication methods still have limitations. In this case, a subtractive 
milling process was used to carve the shaped beam from an initial volume. The fabrication is realized 
on a small scale ShopBot BT32 Buddy 32’’. 

The fabrication constraints were built into the beam volume definition. In the case of the table CNC, the 
points only had a lateral degree of freedom to ensure that the beam could be milled from both sides (flip 
milling) and reached by the router bit. 

4. Results 
The results of the numerical shaping method applied to the timber beams are discussed in this section. 
The numerical optimization was performed on a timber beam with a span of 1m. The design load for 
the low grade Spruce-Pine-Fire South (US Grade 2) section (3.8 cm by 13.6 cm) is 2.5 kN. The maximal 
bending strength assumed is 5.34 N/mm2, the design shear stress is 0.9 N/mm2 and the resistance in 
tension perpendicular to the fiber is taken as 0.3 N/mm2. The initial section was used as a bounding box 
for the shaping algorithm. The beam was optimized by shaping the height only, using the fiber 
adjustment properties described above.  The resulting beam is 19% less volume than then initial, full-
section beam. 

4.1 Fabrication: shaping height only 
The results from the fabrication process are shown in Figure 6. On the left, the initial beam corresponds 
to the bounding box used for the optimization. On the right, the shaped beam is 19% lighter than then 
initial beam. The beam was milled in under a minute. 

  
Figure 6: Left: initial beam. Right: timber beam shaped for height 

4.2 Load testing: shaping height only 
The shaped and initial beams were load-tested for verification in a three points bending test on a set of 
three specimens for each case. The results are shown in Figure 7. The results confirm the prediction for 
the design load of 2.5 kN: both the shaped beam and initial section achieve the design load. The ultimate 
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load of the beam is much higher than the predicted load, as the design value corresponds to the fifth 
percentile of the resistance for the selected grade. However, the ultimate load for the shaped and initial 
beams are different. In fact, the current model is based on elasticity theory, assuming that the section 
remains planar up to the elasticity limit of the material. The ultimate load goes beyond this limit, as it 
can be seen from the ductile behavior of the ‘full beams’ when the curves flatten. Moreover, shaping 
the beams removes alternative load paths, as the beam is designed to take exactly the design load. This 
translates into a greater sensitivity to defects (such as knots) and could explain the difference in ultimate 
loads. Finally, the simplified model for shear stress does not take into account the effect of the beam’s 
slope on the shear stress distribution. 

 

Average displacement at 2.5 [kN] 

Full beams Shaped beams 

3.26 [mm] 3.32 [mm] 
 

Figure 7: Results from the three points bending load test. In the elastic range, the shaped beam with a volume 
reduction of 19% shows similar behavior to the unshaped version. 

To summarize, the predicted design load could be achieved for the shaped beams, with a similar 
behavior in the elastic region, while saving 19% of the weight. 

4.3 Fabrication: shaping height and width 
The fabrication of prototypes with varying width and height was carried out in order to experiment with 
flip milling. In this case, the first face of the beam is milled in on operation. Then, the beam is flipped 
on the CNC table and positioned carefully to the same location using guides. Finally, the second face is 
milled with a new milling operation. The prototype is shown in Figure 8. It took 20 minutes to mill each 
face of the beam. 

 
Figure 8: Prototype of a beam shaped in the height and width 
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4.4. Discussion 
The analytical solution is fast and efficient in shaping beam volumes. However, the design possibilities 
are limited. The numerical optimization method effectively shapes the beams to reduce their weight as 
well, while expanding the solution space of shaped beams. The fabrication was successfully 
implemented to build the prototypes. More interesting and lighter designs are obtained with more design 
variables. Shaping the height results in very fast milling time. Moreover, shaping the width increases 
the savings but also increases the milling time, as the two faces have to be machined. The speed of 
fabrication in relation to the savings achieved should be judged on prototypes at building scale to better 
balance the benefits of a more complex milling for greater volume saving. Also, industrial CNC 
machines are far more efficient. In this case, the tool path was not optimized for speed of fabrication.  

In general, robotic fabrication has a minimal running cost, but this cost should be compared to cost 
savings due to lighter bending systems. The current fabrication method removes material from an initial 
beam volume. As wood comes in square sections to start with, the removal process is beneficial for the 
total dead loads of the structural system. The wood shavings can be reused for wood products 
(fibreboards), as a fuel in wood kilns or energy production with wood pellets. However, additive 
manufacturing methods for shaping beams would achieve an overall better environmental impact by 
eliminating waste, and could open a wider range of design options. In fact, the section could be increased 
to optimize for stiffness or improve the resistance of the connections where needed.  

5. Next steps and conclusions 
The research shows that digital fabrication can be used in combination with shape optimization to 
produce more efficient bending systems in timber. Once the shaping algorithm is calibrated on the 
material properties and the shear model refined, this method has the potential to reduce the weight of 
floor systems. Next, alternative fabrication methods should be developed to use the material more 
efficiently and open the optimization outside of the initial bounding box. Furthermore, the design space 
of shaped structural elements expends considerably when the shaping method could be applied to 
indeterminate structural systems. Shaping indeterminate structures changes their moment distribution 
due to the applied loads, thus creating a new design space. 

Finally, the appeal for timber buildings can be increased when saving materials in ubiquitous structural 
elements is turned into a design opportunity. Shaping beams or structural elements becomes a new 
collaboration ground for designers and engineers. 
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