
manuscript No.
(will be inserted by the editor)

Automated motion planning for robotic assembly of discrete
architectural structures

Yijiang Huang1 · Caelan R. Garrett2 · Caitlin T. Mueller1

Received: date / Accepted: date

Abstract While robotics for architectural-scale construction
has made significant progress in recent years, a major chal-
lenge remains in automatically planning robotic motion for
the assembly of complex structures. This paper proposes a
new hierarchical planning framework to solve the assem-
bly planning problem for architectural discrete structures,
which usually have a long planning horizon and 3D con-
figuration complexity. By decoupling sequence and motion
planning, the planning framework is able to efficiently solve
the assembly sequence, end-effector poses, joint configu-
rations, and transition trajectories for assembly of spatial
structures with nonstandard topologies, which hasn’t been
demonstrated in previous literature. Together with the algo-
rithmic results, this paper also presents an open-source and
modularized software implementation called Choreo that is
machine and application-agnostic. To demonstrate the power
of this algorithmic framework, three case studies, including
real fabrication and simulation results, are presented to show
Choreo’s application on spatial extrusion.

Keywords robotic assembly planning · task and motion
planning · digital fabrication

Yijiang Huang
E-mail: yijiangh@mit.edu

Caelan R. Garrett
E-mail: caelan@csail.mit.edu

Caitlin T. Mueller
E-mail: caitlinm@mit.edu
1Building Technology Program, Department of Architecture, Mas-
sachusetts Institute of Technology, Cambridge, MA, 02139 USA

2Computer Science and Artificial Intelligence Lab, Massachusetts
Institute of Technology, Cambridge, MA, 02139 USA

1 Introduction

Architectural robotics has proven a promising technique for
assembling nonstandard configurations of building compo-
nents at the scale of the built environment, complementing
the earlier revolution in generative digital design. In recent
years, the sharp reduction of industrial robotics’ cost has
made investment in these advanced manufacturing machines
increasingly accessible, converting the industrial robot into
a cost-efficient tool to materialize bespoke design [72].

However, despite the advantages of the decreasing hard-
ware cost, dexterity, and precision of these multi-axis ma-
chines, the time investment in solving the construction se-
quence and associated robotic motion grows increasingly
with the topological complexity of the target design. The
level of automation in this design-assemble workflow is still
comparably low, due to the technical challenge of finding a
feasible assembly sequence and generating trajectories for
the multi-axis robots. While transitioning between a digital
design model and machine code for a 3-axis gantry machine
is easy and direct, for multi-axis robots, gaining fine lev-
els of control and bypassing the complexity of generating
collision-free robotic trajectories is much more nuanced and
subtle, which requires significant effort.

Existing investigations in the field of architectural robotics
often involve manual planning of a path guidance for the
robot’s end effector, followed by tedious diagnosis for po-
tential problems in a trial-and-error manner. This slow and
convoluted workflow deviates from the initial purpose of
having such a digital design-assemble workflow: to forge
a smooth and direct transition from digital design to real-
world machine materialization; instead, the current process
often requires a complete re-program for the robot when-
ever the target geometry has a small change. This technical
challenge in the assembly planning and programming of the
robots congests the overall digital design/production pro-

ar
X

iv
:1

81
0.

00
99

8v
1 

 [
cs

.R
O

] 
 1

 O
ct

 2
01

8



2 Yijiang Huang1 et al.

cess and often confines designers to geometries with stan-
dard topology with repetitive patterns. In order to close this
gap and enable more possibilities for discrete architectural
robotic assembly, an automated assembly planning system is
needed, which calls for a more systematic and explicit com-
putational exploration of assembly constraints and robotic
motion planning.

This work presents a new algorithmic framework for robotic
assembly planning, which embodies an hierarchical algo-
rithm to integrate assembly sequence and motion planning.
The planning framework is implemented as a flexible as-
sembly planning tool, called Choreo, that allows users to
input unconstrained spatial structures, and receive an auto-
matically generated feasible assembly sequence and robotic
trajectory. Case studies are presented to show the computa-
tional planning system’s power in enabling automated plan-
ning for robotic assembly of complex structures with non-
standard topologies, which hasn’t been shown possible be-
fore.

1.1 Scope: Discrete spatial structures

Discrete spatial structure’s definition broadly includes all 3D
structures that consist of individual elements, which are con-
nected to each other via structural joints and behave as a
system when load is applied. The assembly planning prob-
lem is defined as: given a discrete spatial structure’s de-
sign model, the robot needs to be assigned a coordinated
sequence of transition and assembly actions, to manipulate
raw or sorted individual elements in a specific order to con-
struct the designated design. There are essentially two main
classes of robotic assembly applications: (1) spatial extru-
sion (also called spatial 3D printing) and (2) spatial posi-
tioning (also called pick-and-place). In this work, for demon-
stration purposes, all the algorithmic framework description
and case studies use spatial extrusion of 3D trusses with a
fixed-base industrial robotic arm as a concrete problem in-
stance. However, the presented planning framework can be
generalized to multiple robotic manipulators or mobile ma-
nipulation with a straightforward extension.

1.2 Contributions and organization of paper

The contributions of this paper are summarized as follows:

– This paper embodies the first attempt in the field of ar-
chitectural robotics to formally characterize, formulate,
and algorithmically solve the architectural assembly plan-
ning problem. A new hierarchical assembly planning al-
gorithmic framework is proposed to harness the assem-
bly planning problems that have long planning horizon
and three-dimensional complexity.

– An open-source, modularized, and highly customizable
implementation of the proposed planning framework is
presented. The planning software, called Choreo, is adapt-
able to various assembly applications and hardware se-
tups, and can be smoothly fitted into existing digital de-
sign workflow. Case studies on applying the planning
system to spatial extrusion of 3D trusses with irregu-
lar topologies are presented to show Choreo’s compu-
tational power and efficiency.

This paper starts with a review of existing efforts in the
field of automatic assembly. Section 3 presents the assem-
bly planning algorithm, starting from model input (section
3.2), and goes through layers of its planning hierarchy: first
sequence planning layer (section 3.3) and then motion plan-
ning layer (section 3.4). An post-processing module is pre-
sented in section 3.5 to increase usability and adaptability
of the computed results. Section 3.6 presents the engineer-
ing ideas behind the implementation of the assembly plan-
ning tool Choreo. Section 4 shows three case studies with
computation statistics and fabrication results to demonstrate
Choreo’s efficiency and power. Finally, section 5 concludes
the paper by noting out limitations and suggesting areas of
future research.

2 Related work

In response to the need for automated planning in architec-
tural robotic assembly, this section summarizes previous ef-
forts in the area of automatic assembly. Key research from
five distinct fields, (1) robotic assembly for architecture, (2)
classic assembly planning, (3) computer graphics, (4) ma-
nipulation planning, and (5) task and motion planning is pre-
sented, with contributions and drawbacks highlighted. The
aim of this section is to demonstrate why an integrated plan-
ning system, which combines features from all of the above
fields, is needed for robotic assembly to be fully accessible
to architectural designers.

2.1 Robotic assembly for architecture

The exploration of robotic assembly in different architecture-
scale application contexts, such as spatial positioning and
extrusion [20], has focused on the design of application-
specific processes and associated hardware systems. In all
of these applications, researchers have encountered a similar
problem: the generation of feasible robotic trajectories that
do not collide with objects in the workspace [50][13][64].
Current solutions to this problem typically involve an intuition-
based trial-and-error method. For a given robot configura-
tion during assembly, designers manually specify end-effector
poses on the assembly geometry to achieve linear end-effector



Automated motion planning for robotic assembly of discrete architectural structures 3

movement. For transition trajectories, designers manually
generate guiding curves for the end-effector to follow, which
hover over the workspace within a safety distance. Utiliz-
ing industrial robot’s built-in commands like Linear move-
ment (LINE) or Point-To-Point (PTP) [73], users rely on
the built-in interpolation method to translate end-effector as-
signment to joint trajectories that are free of collisions, re-
spect joint limits, and avoid singularities. As a result, this
requires significant effort to diagnose the planning failure in
a trial-and-error manner. Software packages exist to support
this trial-and-error procedure by simulating robotic motion
(such as HAL [60] and KUKA|PRC [2]), but these tools can
only simulate/test a robotic trajectory based on TCP planes
and joint configurations input, without the ability to auto-
matically plan a collision- and kinematics-aware trajectory.
Because of this, these tools currently support a sub-optimal
manual planning manual process.

A recent attempt on harnessing this problem from Son-
dergaard et al. uses an incremental search algorithm to find a
construction sequence for a large-scale topology-optimized
space frame, while guaranteeing the existence of node-specific,
collision-free motion of the assembly parts [64]. However,
the reachable robotic configuration space is not considered
during construction sequence searching, and robots trajec-
tories are later found by inserting custom unwinding posi-
tions. While this geometry and machine-specific approach is
feasible for designs with simple and sparse topologies, the
construction sequence and robotic motion planning is much
more nuanced for designs with denser material distribution
and non-standard topologies.

In recent years, there has been some success in tackling
this planning problem by using a single-query robotic mo-
tion planning algorithm [50] or an online control strategy
[19] to compute transition trajectory between pre-programmed
assembly primitives. However, the construction sequence in
the existing work was still assigned manually, taking ad-
vantage of either the sparse or the repetitive topological na-
ture of the target geometry. Recent progress in the field has
moved towards sensor-enabled online robotic control [32][19].
However, a global planning tool, which combines assembly
sequence planning and associated robotic motion planning,
has not been developed. As pointed out in [19], the combina-
tion of an autonomous control scheme with a “higher-level
planner” that is “able to negotiate cluttered environment”
is a key step to enable robotic assembly systems to operate
safely in densely populated workspaces [13].

2.2 Classic assembly planning

There is a large body of work in classic assembly planning,
also called mechanical assembly planning, dating back to
the 1980s and 1990s with the influential work by Homem
de Mello [7], Wilson [74], and others [5][75]. The focus of

this line of research was generating of sequences that allow
robots in an industrial assembly line setting to assemble a
product based on design CAD files. The primary concerns
were to satisfy low-level constraints such as mutual blocking
during assembly, mating constraints, and tolerances. These
methods focused on the product itself but not the robots that
perform the assembly. This might be a safe assumption for
this domain since the environment and the assembly robots
can be specifically engineered to the task at hand. However,
given a specific robotic setup and a set of mechanical parts to
be assembled, the robot’s configuration space significantly
constrains the reachable end-effector poses [44]. Addressing
this requires considering the robot and the assembly object
simultaneously in the assembly planning (see section 2.4).

The key contributions in the area of classic assembly
planning include (1) the mathematical formulation of the
assembly planning problem (2) the proposal of several com-
pact and efficient representations of intermediate assembly
states and (3) the theoretical characterization of computa-
tional hardness for different classes of these problems. The
reader is referred to section 2.3.2 of Heger’s thesis [25] for
a more extensive overview of the problems explored and
methods used in classic assembly planning. Nearly all work
in classic assembly planning dates back to the 1990s and
earlier. Still, many problems are left unsolved, such as how
to integrate the constraints of the assembler, the robots, into
a single planning scheme.

2.3 Computer graphics

Existing assembly-related research in computer graphics can
be summarized into two categories: (1) computational de-
sign methods with assembly sequence as a physical con-
straint (2) fabrication techniques that require resolving as-
sembly sequence for input objects.

In contrast to classical assembly planning, where assem-
bly planning works like a technical assessment tool for arbi-
trarily input mechanical parts, computational assembly de-
sign focuses on the generation of interesting objects with the
constraint that there exists an assembly sequence. Existing
work considers objects with specific features, such as 3D
polynomino puzzles [43], 3D burr puzzles [77], voxelized
recursive interlocking puzzles [65], furniture with interlock-
ing joints [14], and planar interlocking pieces [61].

The other line of research invents new hardware systems
with assembly sequencing algorithms to enable new fabri-
cation and assembly opportunities. Existing efforts focus on
adding more degrees of freedom to the 3D printing technol-
ogy. WirePrint [49] proposes an efficient way to print wire-
frame meshes, where edges in the mesh are directly extruded
in 3D space. A wireframe of a model is generated by slic-
ing it horizontally and filling each slice with zigzaging fila-
ments. This approach is limited in the types of meshes that



4 Yijiang Huang1 et al.

can be printed. To improve flexibility, Peng et al. introduce
a 5-DOF printer that modifies a standard delta 3D printer
by adding two rotation axes to the print bed [51]. Following
up this work, Wu et al. present a printing sequence plan-
ning algorithm for this 5-DOF printer [76]. Huang et al. and
Yu et al. present a constrained graph cut algorithm to tackle
the printing sequence planning problem for robotic spatial
printing [30][78], which marks the first algorithmic attempt
in attacking the sequence planning for printing frames with
arbitrary topologies. However, their method abstracts away
the robot’s kinematics and instead uses an ad-hoc method to
generate feasible guiding curves for the robot’s end effector
to follow. This results in slow computation and lacks any
trajectory feasibility guarantees. Recently, Dai et al. aug-
mented the degrees-of-freedom of the print bed of layer-
based 3D printing technology by using an industrial robot
to hold the bed. They also presented shape decomposition
algorithms with support and robotics constraints [4].

In summary, existing work in computer graphics takes
the existence of an assembly sequence as a constraint for
designing objects with specific features and customized 3D
printing technology. A general system that integrates assem-
bly sequence searching and robotic motion planning has not
been presented in the literature.

Related problems There is other work that is not produced
in computer graphics community, but also addresses the as-
sembly sequence planning problem to connect the digital de-
sign and the physical assembly process. Tai presents a com-
putational design framework to design interlocking wooden
frames while considering the assembly sequence [69]. In the
context of 3D printing in bio-engineering, Gelber et al. pre-
sented a heuristic backtrack searching algorithm to generate
printing sequence to enable micro-scale freeform 3D print-
ing on a purpose-built isomalt 3D printer [17]. They were
the first to identify that joint positioning errors are caused by
beam compliance and include it as a cantilever constraint in
the sequence searching process [17][18]. This finding influ-
enced the nodal printing orders routing part of the sequence
planning module presented in this work (section 3.3.2).

2.4 Manipulation planning

The robotic planning community has developed many ap-
proaches for motion planning that identify trajectories by
searching in the continuous space of robot joint angles. Re-
cent approaches perform this search using either sampling
[41] or optimization [55][33][59]. In manipulation planning,
the goal is not only to move robot without colliding with
objects in the environment, as in classical motion planning,
but also to contact, operate, and interact with objects in the
world. Early treatment of this problem uses a manipula-
tion graph to decompose planning for one robot to one ob-

ject into several problems that each require moving between
connected components of the combined configuration space
[1][62]. This work observes that solutions are alternating se-
quences of transit and transfer paths, which corresponds the
robot moving with its hands empty and while holding an ob-
ject. Hauser et al. identify a generalization of manipulation
planning problem as multi-modal motion planning, i.e. mo-
tion planning for systems with multiple modes, representing
different sub-manifolds of the configuration space subject to
different constraints [23][24].

Rearrangement planning is a special instance of pick-
and-place planning where all objects have explicit goal poses.
These problems are very similar to the robotic assembly
planning problems addressed in this work, where object goal
poses are specified in the input design model. Stilman et
al. first introduced a version of the rearrangement problems
called navigation among movable obstacles (NAMO), where
the robot must reach a specified location among a field of
movable obstacles [66][67]. They provide a greedy backchain-
ing algorithm for solving monotone problem instances, where
each object need only be moved onces. Extending this work
to non-monotone problem instances, Krontiris and Bekris
provided an algorithm that constructs a probabilistic roadmap
(PRM) [35] in the combined configuration space, using the
algorithm of Stilman et al. as connection primitive [36][37].

Dogar et al. propose a formulation of multi-robot grasp
planning as a constraint satisfaction problem (CSP) [10].
They attempt to find short plans that requires few regrasps.
However, they assume an assembly sequence is given and
does not consider reachability constraint between assembly
configurations.

2.5 Task and motion planning

While motion planners deal with geometric constraints in
high-dimensional configuration spaces, they do not consider
abstract features of the domain, i.e. they can plan how to
move the robot’s joints to pick up an object but cannot de-
cide the order of tasks to satisfy certain constraints. In con-
trast, the artificial intelligence (AI) planning community con-
siders problems that are discrete but require many types of
actions to be performed over long horizons [47][27]. Recent
work in task and motion planning (TAMP) [11][71][39][15]
combines AI and motion planning to simultaneously plan
for discrete objectives as well as robot motions. This work
aims to enable robots to operate in applications such as cook-
ing, which require discrete choices of which objects to grasp
or cook as well as continuous choices of which joint angles
and object poses can physically perform each task. A key
challenge is that often physical constraints such as collision,
kinematic, and visibility constraints can restrict which high-
level actions are feasible. Readers are referred to [16] for a
more complete review of the work in this area.



Automated motion planning for robotic assembly of discrete architectural structures 5

Lagriffoul et al. propose a constraint-satisfaction approach
to interleave the symbolic and geometric searches. They fo-
cus on limiting the amount of geometric backtracking [40].
Lozano-Pérez and Kaelbling take a similar approach but lever-
age CSPs operating on discretized variable domains to bind
free variables [45]. The sequence planning module (section
3.3) proposed in this work adopts a similar technique by us-
ing CSP to bind free geometric variables on a plan skeleton.
However, it relaxes the requirement on feasible whole paths’
existence and trades the algorithm’s completeness for scala-
bility.

2.6 Architectural robotic assembly planning: Unique
challenges and unmet needs

Architectural assembly planning is a subclass of high di-
mensional robot manipulation problems, or more generally,
task and motion planning (TAMP) problems, which requires
planning a coordinated sequence of motions that involve ex-
trusion, picking, placing or manipulating specific type of
construction materials, as well as moving through free space.
Architectural robotic assembly problems differ from typi-
cally studied TAMP problems in three key aspects. First, the
discrete horizon of the assembly problems is much longer
than many TAMP benchmarks [38], which often only re-
quire manipulating a couple of objects. Because each ele-
ment must be assembled once and the goal object poses are
specified by the input design geometry, the assembly hori-
zon is known in advance. Thus, assembly planning requires
identifying an order for object manipulation, fitting this or-
der to a fixed plan skeleton, and binding the required ge-
ometric parameters. In contrast, TAMP problems generally
have unsettled action plans - it is not initially clear which
actions are needed and in which order to perform these ac-
tions to complete a task, and thus the planning horizon can
be arbitrarily long.

Second, assembly problems involve physical constraints
such as stiffness and stability that are not typically found
in TAMP benchmarks. These constraints impact many state
variables at once, making them challenging to effectively in-
corporate in many discrete task planning algorithms. Rather
than directly using existing TAMP algorithms, a specialized
system is developed in this research that incorporates several
existing ideas but, because of its specialization to assembly
planning, can scale to complex models.

Third, common task specification languages for plan-
ning systems, such as planning domain Planning Domain
Definition Language (PDDL) [47] are not intuitive for archi-
tects and designers. The requirement of specifying task do-
mains, predicates, action’s preconditions and effects departs
from the architectural language of shape and geometry, and
thus creates a gap between an architect’s geometric model
and robotic task specification for planning. This gap in the

modeling interface inhibits these algorithms from being eas-
ily adapted to architectural robotic assembly applications.

In summary, there is a rich literature of work related to
robotic assembly for architecture, ranging from theoretical
research in robotic task and motion planning to examples of
built work of considerable intricacy. However, the field is
nevertheless lacking an integrated, general-purpose method
that can be applied systematically across many assembly
project types while also handling the geometric and topolog-
ical complexity of contemporary architectural design. This
work addresses this gap by presenting a new assembly plan-
ning algorithm framework and a modularized implementa-
tion that is adaptable to various assembly applications and
hardware setups. Although the algorithm described in this
paper is more specialized than most of the TAMP approaches,
the ability to scale to problems with much longer planning
horizon and a larger branching factor is the key focus of this
research.

3 Assembly planning framework

This section introduces a new computation framework that
can efficiently handle the problem of robotic assembly plan-
ning. First, section 3.1 gives a conceptual overview of the
entire framework’s hierarchy and introduces its three main
modules. Then, detailed problem formulations and associ-
ated solution strategies are described for the sequence plan-
ning module (section 3.3), the motion planning module (sec-
tion 3.4) and the post-processing module (section 3.5).

3.1 Conceptual overview

A general robotic assembly planning system should have
following capabilities:

1. Take general discrete structures as input, with minimal
possible restriction on the geometry

2. Generate an assembly sequence and associated poses for
the assembly operation, while satisfying geometric, kine-
matic, and structural constraints

3. Solve for collision-free transition trajectories between
assembly operations

4. Be robot and hardware-agnostic
5. Provide an interface to integrate generated trajectory into

hardware control scheme

Creating an assembly planning system that meets the above
capabilities is a challenge because of (1) the computational
complexity inherent from assembly planning problem (2)
the engineering complexity for creating an interface bridg-
ing design to robotic planning.

To address the computational and engineering challenges
posed by the assembly planning problem, this work pro-
poses a planning framework that uses a hierarchical task and



6 Yijiang Huang1 et al.

assembly sequence

process[i] 
start point (x, y, z)
end  point (x, y, z)
feasible end effector 
directionsi = 1, ..., m

Sequence Planner

Geometry Model

Motion Planner

Material Property

Post Processor

Application-oriented
micro planning

assembly plan

process[i] 
transition path (joint trajectory)

process path (TCP trajectory)

i = 1, ..., m

parent_process_id: i
subprocess_id: i
process_type: “transition”
main_data_type: “joint”

joint_arrray
TCP_arrayi = 1, ..., m

tagged assembly plan

process[i] 

subprocess[1]

subprocess[n_i]

subprocess[i]

Fig. 1 Overview of the assembly planning framework.

motion planning approach. The proposed planning frame-
work incorporates three key modules as shown in figure 1.
Instead of searching for a solution considering all parts of
the searching tree at once, the proposed approach identifies
and breaks the problem into two isolated sub-problems, se-
quence planning and motion planning. This separation cuts
the sequence-dependent ties between the sequence and mo-
tion planning subproblems, narrowing down the search space.
First, the sequence planner (section 3.3) takes a discrete struc-
ture as input and outputs the assembly sequence and as-
sociated feasible end-effector poses. Next, given the fixed
assembly sequence and focused end-effector directions, the
motion planner (section 3.4) chooses the end-effector pose
for each assembly and plans for the robot’s entire joint tra-
jectory during and between assemblies. Finally, the post pro-
cessor (section 3.5) tags the computed trajectory plan with
associated assembly information and outputs a complete as-
sembly plan. After this is completed, the user can optionally
use the post processor’s tagging system to insert tool path
modification or control commands to fine-tune the hardware
control.

These modules, along with the framework inputs and
outputs, are described in greater detail in the following sec-
tions. An example problem of using a fixed-base 6-axis robot
to spatially extrude a discretized linear frame structure is
used to illustrate the details of each module, but the system
is general and can also apply to other robotic assembly tasks,
for example, spatial positioning of discretized surfaces or
volumetric elements.

Assumptions In this paper, the robot is assumed to work
in a fully observable and deterministic environment. The
planning starts with an assembly plan skeleton, or action
sequence, that has a pre-defined repetitive pattern on the

actions: for example, pick element oi from material rack -
move - place element oi at position pi - move or extrude el-
ement oi at position pi - move. The planner needs to assign
a correct assignment of object oi to each action in the plan
skeleton, and bind variables to fully specify robot’s config-
urations during and between assembly steps. The generated
plan is purely geometric - the computed velocities are not
used in the execution. Trajectory’s speed for execution is re-
assigned separately by the user after the planning is finished
and robot’s position control is carried out by the industrial
robot’s controller.

3.2 Model input

The assembly planning framework takes as input a 3D model
from a designer. The model should represent overall ge-
ometry, topology, and discretization for robotic assembly.
If started with a continuous form, for example surface or
other volumetric structures, discretization can be performed
by designer intuition or through an algorithmic meshing or
decomposition approach; the framework is agnostic to how
this step is carried out. For each discrete element of the in-
put design, the candidate assembly end effector poses on the
element need to be specified.

For the discretized linear frame structure, a standard node-
member data representation is used. Nodes are described
with 3D spatial coordinates in an indexed list. Linear mem-
bers are described by their start and end node indices. Dif-
ferent cross sections and material properties can be assigned
per member index. For spatial extrusion, each linear element
specifies a sequence of path points that the end effector’s tip
must extrude along. Candidate end effector pose for extru-
sion is specified by direction sampled in the upper hemi-
sphere in the element local reference frame, together with a
rotation angle ∈ [0,2π).

3.3 Sequence planning module

A sequence planner takes any discrete geometry as input and
solves for the order of the assembly operation and associated
feasible end-effector poses. Globally, the sequence planner
computes an assignment of objects to each action in the pre-
defined plan skeleton, which requires reasoning about the
geometric and physical constraints in this discrete search.
Locally, in each individual assembly, the planner computes
all collision-free end-effector poses, given all the collision
objects in the target assembly stage, thus resembling a grasp
planner.

This section first identifies the key constraints that arise
in the sequence planning problem and formulates the prob-
lem as a Constraint Satisfaction Problem (CSP) (Section
3.3.1). Then, a customized solver is proposed (Section 3.3.2)



Automated motion planning for robotic assembly of discrete architectural structures 7

zbase 

xbase ybase 

zee 
xee yee 

Vp 

Rp 

Fig. 2 End effector’s frame and trajectory points’ frame definition.

that operates using two main techniques: (1) backtracking
search with 1-level forward checking and value ordering (2)
user-guided model decomposition.

3.3.1 Problem formulation

The assembly sequence planning problem requires assign-
ing every assembly action with an element from the model
and finding the geometric configurations of a feasible end-
effector path for each task. Axis conventions are described
in figure 2. The end-effector frame is positioned at the 3D
printing extruder’s tip. An end-effector’s pose is defined by
an end-effector frame, which can be uniquely determined by
(1) frame’s origin, (2) z-axis, and (3) rotation angle around
the z-axis. Every trajectory point has a local frame {p} as-
signed to define the position and orientation of the end ef-
fector at that trajectory point. All of these coordinate frames
are described in a common reference frame {base}. In the
following discussions, let n denote the total number of ele-
ments to be assembled in the model.

The input frame model contains a set of linear elements,
O1, . . . ,On. Each element specifies a linear trajectory that the
end-effector’s tip needs to traverse while extruding material.
A discretized representation of the linear trajectory is used,
which divides the trajectory into a sequence of points under
certain discretization resolution. These points only specify
the end-effector poses’ origins, which admit a possibly in-
finite amount of feasible end-effector orientations. To avoid
the twisting force that the end effector might exert on the
molten plastic beam during extrusion [18], the end effec-
tor is required to maintain its orientation when extruding to
obtain a straight printing result. Thus, the robot’s path for
printing an element is determined by (1) the point origins
specified by the element’s linear path and (2) the orienta-
tion of the end effector. For spatial extrusion of 3D trusses,
only one assembly action type is considered: extrude. The
sequence of assembly actions follows an alternating pattern:
extruder-move-. . . -move-extrude. An important simplifica-
tion is made to eliminate the move action concatenating ad-
jacent extrude actions in the sequence planning module, which

differs from the general plan skeleton binding approach that
enforces full path-existence [45]. In this way, evaluating tran-
sition path feasibility is reduced to testing kinematic feasi-
bility and checking collision during assembly. This simplifi-
cation is equivalent to assuming that if robot has a collision-
free kinematic configuration at the start and the end of each
assembly step, the transition motion planner (section 3.4.3)
can always find a feasible transition trajectory. This assump-
tion can be found in some work in TAMP [40] and is gen-
erally valid through all of the performed experiments in this
paper. However, in some extreme cases, this assumption may
not hold true, resulting in planning failure. Future work in-
volves including a mechanism to recover from such a plan-
ning failure.

Each action in the predefined assembly plan skeleton is
specified with a constraint variable and a set of geometric
parameters. Each constraint variable is a symbol that names
an assembly element. Each geometric parameter defines a
end-effector pose. To bind these variables, a CSP planner is
called to verify if the assembly plan skeleton is satisfiable.
The correctness of an assembly plan skeleton is enforced
by the constraints, which are expressed as relationships be-
tween the assembled elements at each assembly step and the
end effector’s pose.

To formulate a discrete CSP, it is necessary to specify a
set of constraint variables, a discrete domain of values for
each variable, and a set of constraints. Constraints are spec-
ified by a set of variables to which they apply and a test
predicate that maps an assignment of variable values to true
or false [8].

Constraint variables and geometric variables The CSP is
encoded using constraint variable Oi, i ∈ {1, . . . ,n}, which
represents the assembly element assignment for i-th assem-
bly action in the assembly action skeleton. Its value domain
is 1, . . . ,n, representing the indices of elements in the input
model.

Though not explicitly expressed as constraint variables,
the geometric variables are pruned by the CSP solver and are
used to guide the solver’s search. The pruned geometric do-
mains will be outputed as a part of the solution. Geometric
variables used in this problem are Vi, i ∈ {1, . . . ,n}, repre-
senting the end effector’s direction for i-th assembly action.
Its value domain is 1, . . . ,m, which represents the indices
of directions. The indices of those directions refers to an
ordered list of unit vectors sampled on a semi-sphere. The
sampling size m is set according to desired discretization
granularity. This meta-parameter balances the completeness
and tractability of the computation and could be iteratively
increased upon failing to find a solution.

An assigned value v of Vi alone cannot uniquely deter-
mine the pose of an end effector. One needs to determine the
rotation angle r around the assigned direction value v to de-



8 Yijiang Huang1 et al.

termine the end effector’s pose for assembly (see figure 2).
This degree of freedom remains undetermined during the en-
tire sequence planning process. The selection is postponed
until the motion planning process (Section 3.4). Notice that
the domain definition of this rotation angle r is application-
dependent. All the assembly tasks share a continuous rota-
tion angle domain in interval [0,2π) for spatial extrusion
due to the application and end effector’s z-axis symmetric
nature. However, general assembly tasks, for example spa-
tial positioning, might need different rotation angle domain
Ri to be assigned to each assembly element, depending on
the grasp relationship between the end effector and the tar-
get assembly element.

Constraints Constraints relate the variables to one another
and limit the set of valid assignments. If all the constraints
are collectively satisfiable, then an assembly plan skeleton
is valid, and the pruned geometric variable domains specify
the geometric details for subsequent motion planning. In the
spatial printing domain, the following types of constraints
are used:

AllDiff(O1, . . . ,On): Each assembly element is used only
once by an assembly action. No disassembling and reassem-
bling is allowed. Thus, all assembly element assignment Oi’s
values are distinct.

Connectivity(O1, . . . ,Ok), k = 1, . . . ,n: At each assem-
bly step, the newly added element must be either connected
to the existing structure or connected to the ground. Let
Boolean matrix A ∈ {0,1}m∗m denotes the adjacency matrix
of the input spatial truss design model:

A[i][ j] =
{

1, if element Oi and O j share a node;
0, otherwise.

And ground connectivity matrix G ∈ {0,1}m∗1:

G[i] =
{

1, if element Oi has a grounded node.
0, otherwise.

Then the connectivity constraint can be expressed as:

FORALL 1 <= i <= m, EXIST 1 <= j < i,

A[Oi][O j] = 1 OR G(Oi) = 1

ExistValidEndEffectorPose(O1, . . . ,Ok), k = 1, . . . ,n:
This constraint checks if there exists a valid end effector
pose for each assembly action in the assembly plan skeleton.
At each assembly step, existing assembly elements O1, . . . ,Ok−1
are considered as collision objects. These collision objects
may collide with the end effector for some of the poses
specified by direction Vi’s value and rotation angle around
the direction. Vi’s domain is pruned by the collision objects,
eliminating the values that have no valid rotation angle. For
spatial printing, a symmetric cone that encloses the end ef-
fector is used to avoid explicitly checking or sampling all

(a) (b) (c)

end effector

Fig. 3 Illustration of the geometric pruning. The existence of already
assembled element (the element on the top in (c)) restricts the collision-
free end-effector pose in current assembly task, which prunes out val-
ues in associated end-effector direction Vi’s domain in (b). Around a
chosen direction, the end effector’s rotation angle Ri’s domain is fur-
ther pruned as in (a). The solid gray regions are valid while the line
hatched regions are invalid.

rotational values around the chosen direction. A graphical
demonstration of this geometric pruning is shown in figure
3. This constraint can be expressed as:

FORALL 1≤ i≤ n,

EXIST a, 1≤ a≤ m,

(FORALL 1≤ j < i, T [Oi][O j][a] = 1)

AND (ExistValidKinematics(a,O1, . . . ,Oi−1,Ostatic))

where the three-dimensional Boolean matrix T ∈{0,1}n∗n∗m:

T [i][ j][a] =


1, if printing element i with direction a

does not collide with element j.
0, otherwise.

and ExistValidKinematics is a function that returns true if
and only if there exists one rotation angle around the chosen
direction a that admits whole-body kinematic solutions for
the robot to traverse the path points of the current element,
without colliding into already assembled objects O1, . . . ,Oi−1
and static world collision objects Ostatic. The kinematics check-
ing function samples rotation angles in [0,2π) around direc-
tion a and checks the existence of a feasible joint solution
until it finds a solution. It immediately returns true if it suc-
ceeds and returns false if it fails to find a feasible rotation an-
gle within a specified sampling timeout. This function does
not guarantee the existence of feasible kinematic solution
for all the rotation angles - it is used only to eliminate the
case where collision-free end-effector poses exist but with-
out associated feasible kinematic solutions. Note that the
computation involved in checking the end effector’s colli-
sion (FORALL 1≤ j < i, T [Oi][O j][a] = 1) is much lighter
than checking the existence of a feasible kinematic solution,
enabling faster pruning in the search.

Stiffness(O1, . . . ,Ok), k= 1, . . . ,n: The stiffness constraint
ensures that the partial assembly at each assembly step is
stiff and the maximal deformation due to gravity (or other



Automated motion planning for robotic assembly of discrete architectural structures 9

constantly presented load) is bounded by a predefined toler-
ance. In the case of spatial 3D printing, the deformation of
all the nodes under gravity can be calculated using finite el-
ement analysis [48]. The constraint test function returns true
if and only if the maximal node deformation is smaller than
the tolerance.

Stability(O1, . . . ,Ok), k= 1, . . . ,n: The stability constraint
checker returns true if the gravitational center’s projection
on the supporting plane lies in the convex hull of all the
grounded nodes, and returns false otherwise. It guarantees
that the rigid, partially-assembled structure meets moment
equilibrium and does not require a tension connection at the
support to remain upright [52].

For different types of discrete structure assembly, such
as masonry vault assembly [9][42], a different evaluation
scheme for checking the stability constraint can be added to
check the static equilibrium of the partially assembled struc-
ture, in response to the difference in the mechanics involved.

The evaluation of the stability constraint commonly in-
duces a large amount of overhead as it will be called many
times by the CSP planner. Finding an efficient constraint en-
coding to enable more efficient pruning and faster computa-
tion is in the authors’ investigation for future work.

3.3.2 Solving the CSP

A key advantage of a CSP formulation is that the if a user
provides a description of their problem in this representa-
tion, a generic solver can perform the search. In this paper,
a simple backtracking search with 1-level forward checking
and dynamic variable ordering is used as a baseline solver
(chapter 5.3, [8]). A domain-dependent heuristic is proposed
to assist the variable ordering. In addition, to limit the com-
putation in a reasonable amount of time, a user-guided model
decomposition is introduced before running the search algo-
rithm. Integrating the CSP encoding with generic, blackbox
CSP solvers is left as future work.

Backtracking search with dynamic variable ordering and 1-
level forward checking The heuristic used in the dynamic
variable ordering includes two types of costs:

Collision cost Ec: Although o is printable, it might cause
the remaining unprinted elements to have no feasible end
effector orientation in the following stage. Thus, a collision
cost is added for tie-breaking by prioritizing the successor
that roughly admits the most future orientations.

Distance-to-base cost Ed: A grounded element o that
is further from the robot’s base should be printed first. The
Distance-to-base cost is defined as:

Ed(o) =

{
1− dist(base,o)

maxo(dist(base,o)) , o is grounded
0, otherwise.

Notice that the cost Ed is only used for grounded elements as
a tie-breaker, while the collision cost Ec is used as a heuristic
to guide the search for all the elements.

User-guided model decomposition Model decomposition in-
volves grouping the discrete input model into several con-
nected components. Taking advantage of a user’s intuition
on the geometric relationship, the decomposition breaks the
whole assembly sequencing problem into several smaller
ones, and the search is confined to each of these small sub-
problems. This decreases the size of the search space and
leads to more efficient CSP solving overall. When the in-
put model has a large number of elements, the heuristic de-
scribed above might not be informative enough to guide the
search efficiently and result into many backtrackings. For
example, for the topology optimized vault (figure 4), model
decomposition can eliminate backtracking to zero and lead
to 40% of decrease in computation time (table 1). How-
ever, for some models, e.g. the 3D Voronoi (section 4.1),
the heuristic searching itself is powerful enough to find a
solution without any backtracking (table 1) and thus model
decomposition is not necessary in this case.

Thus, in order to accelerate the computation for model
with a large number of elements, the planning framework
offers users the choice to manually group the elements to
guide the search in CSP, based on their intuition on the geo-
metric occlusion between the decomposed groups. The re-
sulting decomposition has been proven to be effective in
handling the sequence planning for many complex geometry
instances that exceed the 3D printing capabilities of robots
in existing literature (see section 4). However, it is possi-
ble for the user to provide a bad decomposition that leads to
longer runtime or even failure of finding a feasible solution.
Based on the authors’ experiments, it usually takes several
iterations before one can find one decomposition that works.
Nevertheless, searching with decomposition provides users
a quicker way to have a sense of whether the model has a
sequence solution or not, while a direct heuristic search can
only assert the inexistence of a solution after searching all
possible partial states. A more general automatic model de-
composition, along with the relationship between decompo-
sition and completeness, is left as future work.

Routing nodal printing orders After the CSP planner fin-
ishes its search and produces an assembly order, the nodal
printing orders can be further optimized to increase empir-
ical printing success. For assembly steps that connect two
existing nodes, the assignment of start node and end node
can be chosen without affecting the sequence planning re-
sult’s feasibility. This assignment has recently proven to be
critical for the physical execution of spatial extrusion due to
the molten joint’s incapability to resist bending moment and
elastic recoil effect [18]. Gelber et al. introduce a cantilever



10 Yijiang Huang1 et al.

model decomposition search time [s] # of backtrack
# of partial

states visited

TopOpt Vault (fig 4)
without

with
878
518

26
0

158
132

3D Voronoi (sec 4.1)
without

with
2311
2299

0
0

306
306

Table 1 Sequence planning computation statistics with and without decomposition.

(a) (b) (c)

Fig. 4 Model decomposition and assembly sequence results for a
topology optimized vault [28]. (a) shows that the model is decomposed
into 11 layers, where six colors are used cyclically to depict layers. (b)
and (c) show the assembly sequence results that are generated with de-
composition and without decomposition respectively. In (b) and (c),
elements are colored from red to blue, corresponding to the first to the
last in the assembly sequence.

constraint to their assembly planning algorithm to address
this problem: new elements cannot be connected to node
p, if any previously printed element connected to p is can-
tilevered [17]. A relaxed version of this constraint is used
here to route the nodal printing order: starting from the node
with larger degree (number of connected elements) is pre-
ferred. Based on the authors’ experiments, the introduction
of this direction routing process dramatically increases the
rate of empirical printing success while not affecting the ge-
ometric planning.

3.4 Motion planning module

The plan skeleton obtained from the sequence planner spec-
ifies the order O1,O2, . . . ,On and a range of collision-free
end-effector directions Vj, j ∈ {1, . . . ,mi} for each assem-
bly task. To obtain a full kinematic motion for the robot,
the motion planner needs to (1) determine the robot’s trajec-
tory during each assembly task and (2) plan for the robot’s
trajectory between assembly tasks. This is a dual motion
planning problem due to the Cartesian motion planning with
constraints on end-effector’s poses during assembly task and
free motion planning without constraints on end effector’s
pose in transition. In the proposed planning framework, this
dual motion planning problem is solved in two phases: semi-
constrained Cartesian planning (section 3.4.1) to resolve
the redundancy in end effector poses and associated robot
kinematic during each assembly task. Then, retraction plan-
ning (section 3.4.2) is added between the Cartesian motion
and transition motion to enable a safer robot trajectory. Fi-

transition motion

retraction motion

1

extrusion motion
(Cartesian motion)

retraction motion

2

3

4

Fig. 5 Illustration of a transition motion, retraction motion, and Carte-
sian motion sequence for two adjacent extrusion processes.

nally, transition planning (section 3.4.3) is used to com-
pute robot’s trajectory in between adjacent assembly tasks.
The sequential layout of transition motion, retraction mo-
tion, and Cartesian motion is illustrated in figure 5.

3.4.1 Semi-constrained Cartesian planning

In many robotic assembly applications, the robot’s end ef-
fector is required to move linearly, where the end effector’s
tip must follow designated path points. However, its orien-
tation may still have some degrees of freedom [6]. For ex-
ample, spatial extrusion requires that the tip of the printing
nozzle traverse the points on the linear path formed by the
element but has freedom in choosing the end effector’s ori-
entations. In addition, even when the end-effector’s poses
are fully specified, there is still kinematic redundancy in
choosing corresponding robot configurations. Planning for
this type of motion is called semi-constrained Cartesian plan-
ning.

In this section, a graph-based semi-constrained Carte-
sian planner is proposed to resolve the redundancy in the end
effector’s orientation and robot’s kinematics to fully deter-
mine robot’s joint configuration during each assembly pro-
cess. For spatial extrusion of a single element, the robot’s
end effector needs to traverse a linear path with a fixed end
effector direction and rotation angle. In order to fully deter-
mine the robot’s configuration in each individual extrusion
task, the planner has three variables to assign for each as-
sembly task: (1) the end-effector direction vk, (2) the end-



Automated motion planning for robotic assembly of discrete architectural structures 11

effector’s rotation angle rk around its z-axis direction, and
(3) joint configurations corresponding to each of the end ef-
fector poses:

pi
k = (xi

k,y
i
k,z

i
k), i ∈ {1, . . . , number of path points in task k}

vk ∈ direction domain Vk

rk ∈ [0,2π)

Solving for robot’s kinematic solution problem requires find-
ing feasible joint positions θ ki for each pose pki in task k’s
path:

θ ki = (θ 1
ki
, . . . ,θ d

ki
),d = robot’s degrees of freedom

pki = f (θ ki)

Here, f represents the robot’s kinematics. Notice that the in-
verse kinematics solution θ ki for target end-effector pose pki

is not unique and needs to be determined by the planning al-
gorithm. Meanwhile, the computed joint solutions have to
be collision-free with respect to objects in the environment
during the assembly stage. In addition, the motion between
consecutive joint solutions should respect the robot’s max-
imum velocity and acceleration limitations so that the joint
solution sequence is physically executable.

Existing work addresses semi-constrained Cartesian plan-
ning problem using an approach that discretizes the end ef-
fector’s candidate poses and kinematic solutions and per-
forms a discrete search on a planning graph [6][56]. This
algorithm starts with a list of given end effector poses for
the robot to traverse and each end effector pose is assigned
with parameters with tolerance ranges. With the tolerance,
each given path pose represents a family of parameterized
end effector poses and each pose in this family corresponds
to a family of robot’s joint configurations by performing an-
alytical inverse kinematics with ikfast [31]. These joint con-
figurations can be organized as vertices in a planning graph
where edges only exist between vertices that belongs to the
same or adjacent end effector pose families. Vertices that
represent joint configurations in collision are pruned and
edges that represents sharp turns of adjacent joint config-
urations will not be added to the planning graph. A cost
is assigned to each edge in the graph as the L1 norm of
the difference of the two adjacent joint configurations. In
this way, the semi-constrained Cartesian path planning prob-
lem is converted to a shortest path searching problem on a
directed ladder graph, which is a multi-partite graph with
edge connections between only independent set k and k+1,
k ∈ {1, . . . ,n− 1}. Each rung in the ladder graph consists
of joint configurations that belong to the same end effec-
tor pose’s parameterized family. The rung’s index can be
viewed as a time index on path points. The resulting path
represents a sequence of joint configurations with minimal
joint difference between adjacent joint configurations [6].

However, the planning problems encountered in archi-
tectural robotic assembly usually involve longer planning
horizons and two dimensions on end effector choice per as-
sembly. These features make a direct application of the lad-
der graph search algorithm described above impractical. For
example, for spatial extrusion of a truss model with 300 ele-
ments, the storage of the corresponding planning graph will
take 362 Gigabytes, which exceeds the RAM capacity of a
common desktop computer. To address this memory issue,
a sampling-based optimization algorithm is proposed to first
search on a sparse representation of the planning graph and
then expand this representation into a significantly reduced
full graph to perform a shortest path search.

Extracting sparse ladder graph This section first introduces
a sparse representation of the planning graph, called sparse
ladder graph, to help compress and locate the region on
the planning graph that contains a close-to-optimal solu-
tion for the semi-constrained Cartesian planning problem.
A sampling-based planning algorithm is used to extract this
sparse representation that is asymptotically optimal locally
in this module, which means that the probability of converg-
ing asymptotically to the optimum approaches 1.00 with an
infinite number of samples [34].

There are two reasons for the memory overhead in the
original planning ladder graph: (1) the entire ladder graph
needs to be expanded and stored and (2) time indices are as-
signed to workspace path points that leads to massive num-
ber of edges connecting rungs that have adjacent time in-
dices. This observation leads to the idea of leveraging the
assembly task’s sequence {1, . . . ,n} as a sparser time index
for rungs and incrementally building a sparse ladder graph
to first find end effector poses for each assembly task and
later recover a reduced ladder graph to search for joint con-
figurations. A sparse ladder graph is a compressed version
of the original ladder graph, where joint configurations are
grouped under a compact data structure called capsule and
directed edges are constructed between capsules. A capsule
is an element, direction, rotation triplet (i,v,r) that deter-
mines end effector’s poses during an element’s assembly. In
addition, the first and last path point’s corresponding joint
configurations are recorded in the capsule (figure 6).

Thus, a capsule uses end effector pose to represent the
corresponding joint configurations, while enabling (1) the
definition of cost (or distance) on a directed edge between
two capsules based on first and last pose’s joint configura-
tions and (2) the later expansion to a full planning graph of
joint configurations. Graph edges in the sparse ladder graph
are directed and limited to capsules that have adjacent time
index, i.e. between (i,v,r) and (i+1,v′,r′). The cost of such
an edge is defined as the minimal L1 norm of joint pose dif-
ference between the last path point’s kinematic solutions of
source capsule (i,v,r) and the first path point’s kinematic



12 Yijiang Huang1 et al.

solutions of target capsule (i+1,v′,r′). By searching on the
sparse ladder graph, one can locate close-to-optimal end ef-
fector poses for all the assembly task, without encountering
the memory overhead caused the expansion of joint config-
urations for all the path points.

Computing an optimal capsule path on the sparse ladder
graph The sparse ladder graph is used to find a path of
capsules to traverse all the assembly tasks that is close-to-
optimal locally in this module. This capsule path can be
expanded to a fraction of the original planning graph that
contains the close-to-optimal path of joint configurations.
Sampling-based algorithms are well suited for this problem
because they allow an incremental construction of the sparse
graph and provide almost-sure convergence to the optimal
solutions locally for this module [34].

In order to apply these algorithms to the problem here,
special initialization, sampling, feasibility checking, and con-
necting functions are provided. These procedures adapt plan-
ning to the hybrid discrete-continuous state space and the
sequential layout of the sparse ladder graph.

Let X ⊆ [n]× [m]× [0,2π) be the state space of the sparse
planning problem, where [m]×[0,2π) parameterizes the end-
effector’s pose by assigning end effector’s direction with in-
dex j ∈ [m] = {1, . . . ,m} in a precomputed list of directions
and rotation angle θ ∈ [0,2π). n is the number of elements
to be assembled and represents the time index in the assem-
bly process. Each state (i,vj,θ) corresponds to a capsule.
Let Xobs ⊆ X be the set of states where the capsule does not
have feasible joint poses for some of the path points for the
corresponding task. Let X f ree[i] =X−Xobs[i] be the resulting
set of permissible states in assembly step i. Let δ : [n] 7→ X
be a sequence of states and Σ be the set of all paths. The
optimal path planning problem on a sparse ladder graph can
be defined as the search for the path δ ∗ that minimizes the
accumulated cost of the path while traversing each assembly
task in a chronological order:

δ
∗ = argmin

δ∈Σ

{c(δ ) |δ [i] = x(i, ·, ·),∀i ∈ [n],δ [i] ∈ X f ree[i]}

We use the following cost function:

c : X×X 7→ R+

c(x,x′) = min
J1,J2
||J1−J2||L1

s.t. J1 ∈ InvKm(ExtractPose(x)[last path point])

J2 ∈ InvKm(ExtractPose(x′)[first path point])

where InvKm denotes an analytical inverse kinematic solver
that returns all collision-free robot’s joint configurations cor-
responding to a given end effector pose. The function Ex-
tractPose: (X 7→ end effector poses) returns all the end ef-
fector poses that state x (capsule) encodes.

In this paper, the Rapidly-exploring Randomize Tree*
(RRT*) algorithm is applied to the sparse ladder graph (fig-
ure 7). Other asymptotically optimal sampling-based algo-
rithms, e.g. Probablistic Roadmap* (PRM*), could also be
used. The complete description of these algorithms can be
found in [34]. Key modifications enabling these algorithms
to operate on the sparse ladder graph are highlighted below:

Sample: The sampler operates on a hybrid discrete-
continuous state space, which returns a state x ∈ X(·, ·, ·)
that is generated from three different and stand-alone sam-
plers. Each one of these three samplers generates indepen-
dent samples by randomly sampling uniformly the corre-
sponding state space. The generated samples uniquely de-
termine (1) assembly task’s time index i (2) end-effector di-
rection index j in assembly task i’s direction list, and (3)
rotation angle θ ∈ [0,2π), which all together determine end-
effector’s poses along the path points in assembly task i.

CheckFeasibility: State x’s validity is verified by check-
ing if all the encoded path points have feasible robot kine-
matics solutions. For state x ∈ X(i, ·, ·) with task index i, a
kinematic solution for a given end effector pose is pruned
if it results in a collision. Each task has a different set of
collision objects, as elements assembled in previous tasks
become collision objects in subsequent assembly tasks.

Nearest and Rewiring: Given a state x ∈ X(i, ·, ·),1 <

i≤ n, the function Nearest returns the vertices with smallest
cost to x ∈ G∩X(i− 1, ·, ·), where G is the current sparse
ladder graph. Edge connections are restricted to only ver-
tices in adjacent assembly tasks, as skipping assembly tasks
is not allowed.

Extracting a trajectory solution The sampling-based algo-
rithm returns a path δ in the sparse ladder graph. The path is
then expanded as a subgraph of the original planning graph
to enable the use of standard shortest path search algorithms
to find the sequence of joint poses with minimal cost. Each
state (capsule) in the returned path σ is expanded by adding
the intermediate path points’ kinematic solutions as vertices
on the corresponding rungs and then constructing edges be-
tween all vertices on adjacent rungs, which corresponds to
two successive path points (figure 7).

The expanded graph is a directed acyclic graph (DAG).
By topologically sorting its vertices, a shortest path can be
identified in time linear in the size of the graph (chapter
24.2, [3]). The resulting path gives a discretized joint tra-
jectory for each assembly task in the assembly action se-
quence, which fully determines the robot’s configurations
during each individual assembly task.

Notice that when applied to semi-constrained Cartesian
planning problems, this sparse graph hierarchical approach
preserves local optimality in this module, compared to di-
rectly applying shortest-path search on a full ladder graph
of joint configurations. In the original ladder graph, edge



Automated motion planning for robotic assembly of discrete architectural structures 13

start path point end path point

valid capsule

valid capsule

invalid capsule

end effector

feasible end effector
directions

Cartesian path points

rotation around
direction

Positions + Direction + Rotation Poses= Joint configurationsinverse kinematics

Fig. 6 Demonstration of capsules in the sparse ladder graph. Inside each capsule, only the start and end pose’s kinematic families are stored (black
dots), while all other joint poses (white dots) are abstracted away.

connections are limited between joint configurations that be-
longs to the same or adjacent end effector pose parametriza-
tion to satisfy the end effector’s orientation constraint. Viewed
in the sparse ladder graph, this disallowance of edge con-
nection across pose families is enforced by putting all the
capsules that correspond to the same element’s assembly in
the same rung (independent set). Thus, no potential decrease
in path is lost by applying this hierarchical sparse ladder
graph approach locally in this module. However, if viewed
globally on the entire assembly planning system, the joint
configurations generated by this module might result in sub-
optimal or even infeasible transition trajectories. In general,
trading the entire system’s completeness and global optimal-
ity for tractability is common among hierarchical planning
approachs.

3.4.2 Retraction planning

Retraction motion is a short segment of slow linear motion
that is inserted between each transition motion and Carte-
sian motion as a buffer to allow the robot to safely change
from high speeds to low speeds when it’s approaching (or
departing) the workpiece (figure 5). In this work, the retrac-
tion planner constructs the linear segment by sampling in
the set of feasible end-effector’s directions produced by the
sequence planner and generates a line along this vector with
a user-defined length. The same feasibility checking strat-
egy used in the sampling-based algorithm in the last section
is applied here to verify the sampled direction’s feasibility.
Using the Cartesian extrusion motion’s orientation, the end
effector’s orientation during this retraction motion is kept
unchanged. For more general assembly problems, for exam-
ple spatial positioning, the direction of this retraction motion

is related to the assembly and the end effector’s geometry
or the structural joint’s geometry (e.g. interlocking joint be-
tween two wood elements).

3.4.3 Transition planning

Following semi-constrained Cartesian planning and retrac-
tion planning in the last two sections, transition planning
computes a collision-free joint trajectory connecting the last
joint pose in the departing retraction motion in assembly
task i and the first joint pose in the approaching retraction
motion in assembly task i+ 1. This is solved using a stan-
dard single-query motion planner, which takes into account
of the present collision objects in assembly task i (figure 8).
The transition planner first tries to call the motion planner
for directly connecting the target start and goal configura-
tions. Upon failure, it replans by inserting a reset home way-
point between the start and goal configurations. This guides
the planner to find a feasible solution as the configuration
space near the home waypoint is less constrained. The tran-
sition trajectories generated from three state-of-the-art mo-
tion planners are shown in figure 8. The result in figure 8
(b) shows that the CHOMP planner [55] frequenly fails to
generate a feasible transition plan on its first attempt and
thus requires resetting itself to the home waypoint quite of-
ten. Based on the authors’ experience, the STOMP planner
works the best, producing smooth and feasible trajectories
with less excessive joint movement.

3.5 Post processing module

In this work, post processing includes (1) the reassignment
of velocities to the computed trajectories and (2) the in-



14 Yijiang Huang1 et al.

Capsule i Capsule i+1

assembly tasks

en
d 

ef
fe

ct
or

 p
os

es

rung 1 rung 2 rung 3 rung 4 rung 5

Fig. 7 Demonstration on applying RRT* on sparse ladder graph. The optimal capsule path is highlighted, and the expansion of two adjacent
capsules is depicted.

(a) (b) (c)

Fig. 8 Transition planning with different planners: (a) STOMP [33]
(b) CHOMP [55] (c) RRT* [34]

sertion of end effector control between trajectories. After
post processing, the generated commands can be converted
into an executable robot code that is specific to an indus-
trial robot’s brand. This “translation” step is left to exter-
nal robot’s softwares. The post processing module proposed
here uses a tagging system to group and tag the trajecto-
ries with meta-information that describes the containing pro-
cess’s name and time index. This tagging process enables an
easier importing and parsing of the results into various pro-
gramming systems for application- and hardware-specific
adjustment and fine-tuning. This allows the planning frame-
work to be used in various robotic assembly applications
with different hardware setups. Two specific ways that the
tagging process can be used are described in this section.

The reassignment of control velocities and synthesis of IO
commands The generated robot trajectories is entirely ge-
ometric and its inherent timestamp information only pro-
vides the order of joint configurations. Meaningful times-
tamps need to be reassigned by the users to the computed
trajectories after the planning is finished. In addition, in or-
der to generate instructions for the robot to interact with the
physical world, the users need to weave IO commands to
synthesize the robot’s motion and end effector’s behavior.
Many existing architectural robotic assembly projects in-

volve an offline programming process. In these projects, the
insertion of IO commands is usually carried out in a graph-
ical programming platform, for example, Grasshopper [21],
to have a visually friendly way to insert IO commands in the
trajectory command list with live simulation playback. This
process, however, can be very tedious when working with
robotic assembly applications with a long planning horizon
and a massive number of configurations. To increase the
computed trajectory’s compatibility to these visual program-
ming platforms for trajectory post processing, the generated
trajectory is formatted in a customized JSON format, which
contains a hierarchical information structure to maximize its
readability and usability. Each element’s assembly process
contains several subprocesses, each of which is tagged with
a subprocess type: transition, retraction-approach, extrusion,
or retraction-depart (figure 9).

Many robotic assembly projects require the robot to have
different end effector speed (also called workspace speed) in
different phases of its motion. Users need to produce control
velocity subject to the constraint or need of their applica-
tions. For example, for spatial extrusion, the robot must to
extrude material with its end effector following a straight
linear movement in a constant speed. Most of the indus-
trial robots provide linear movement commands that take
a tool center point (TCP) plane to generate linear move-
ment with a user-defined constant end effector speed. This
requires that the result produced by the tagging system con-
tains both robot’s joint trajectory and the associated TCP
planes to allow users to choose according to the subprocess’s
definition. To support this feature, when exporting computed
trajectories, the planning system performs forward kinemat-
ics to every joint configuration to compute corresponding
TCP planes. Both of these joint array and TCP array are
packed with assembly task id, subprocess id, and subpro-
cess type. In addition, the data type can be specified to indi-



Automated motion planning for robotic assembly of discrete architectural structures 15

parent_process_id: i
subprocess_id: 4
process_type: “retraction-depart”
main_data_type: “TCP”

joint_arrray
TCP_array

parent_process_id: i
subprocess_id: 1
process_type: “transition”
main_data_type: “joint”

joint_arrray
TCP_array

parent_process_id: i
subprocess_id: 2
process_type: “retraction-approach”
main_data_type: “TCP”

joint_arrray
TCP_array

parent_process_id: i
subprocess_id: 3
process_type: “transition”
main_data_type: “TCP”

joint_arrray
TCP_array 

Start extruder
Wait 2 seconds
Print a “knot” at the start node
change TCP moving speed to 
extrusion speed

set TCP linear speed to 
retraction speed

Print a “knot” at the end node
Stop extruder
Wait 2 seconds
change TCP moving speed to 
retraction speed

transition motion retraction motion
(approach)

1 2 extrusion motion3 retraction motion
(depart)4

Fig. 9 Illustration of the meta-information generated by the tagging system. An element’s assembly process consists of four subprocesses: (1)
transition, (2) retraction-approach, (3) extrusion, and (4) retraction-depart. Insertion of end effector control commands and path modifications are
shown between processes.

cate what kind of motion the subprocess is using. TCP data
should be used if end effector linear movement with con-
stant speed is desired, and joint data should be used if there
is no constraint on the end effector’s speed.

On the other hand, control commands for the end effec-
tor need to be synthesized into the robotic trajectories. These
commands are usually application- or hardware-specific, which
involves digital IO, analog IO, and wait times, to enable in-
dustrial robot’s controller to send commands to activate/stop
external customized devices’ behavior. For example, spatial
extrusion needs the end effector to start extruding material
between retraction-approach and extrusion motion, and stop
extruding right after the robot finishes the extrusion. This is
done by inserting a digital ON/OFF command between the
designated processes.

To form a smooth transition into the established method
of weaving IO commands in a graphical programming en-
vironment, the formatted trajectories produced by the post
processor can be imported into any such platform, such as
Grasshopper [21], with a simple customized parser, to de-
code the JSON file. Users can insert insert robot commands,
such as digital IO, analog IO, and wait time, based on the
assembly element’s index and process context, without hav-
ing to find the index of a specific joint configuration them-
selves. Then, existing robot simulation packages can be used
to simulate the robot’s trajectory to verify the correctness
and safety of the trajectories and export brand-specific robot
instruction code.

Application-oriented path modification For many robot as-
sembly processes, especially spatial extrusion, the variety
of end effector designs and material properties requires the

incorporation of ad-hoc fabrication logic to achieve the de-
sired visual results [22][26] or increase the product’s struc-
tural performance [70]. These fabrication logics, which are
derived from physical extrusion experiments, usually involve
local modification of an end effector’s pose, such as pressing
or extruding following small circular movements at struc-
tural joints to create local “knots”.

The metadata associated with the computed trajectories
allows users to easily insert these micro path modifications.
These path modifications usually require users to iterate on
the parameters controlling robot and its end effector’s be-
havior, until they find the best parameter setting based on
experimental observations. For spatial extrusion, one needs
to perform many experiments to find the delicate balance
between robot’s linear moving speed while extruding, cool-
ing air’s pressure, and extrusion rate. Because of the tagging
system, the fabrication parameter calibration process repeats
between the fine-tuning programming platform and physical
tests, while keeping the overall planned robotic trajectory
unchanged.

3.6 Implementation

The proposed hierarchical assembly planning framework has
been implemented in a proof-of-concept planning tool called
Choreo. This tool allows users to compute feasible robotic
assembly trajectories using unconstrained target assembly
geometry, and it supports customized hardware work envi-
ronments. In this paper, Choreo is configured to work with
spatial extrusion applications. This section first presents the
general system architecture (section 3.6.1) and then presents



16 Yijiang Huang1 et al.

an overview of the user experience of Choreo along each of
its computation state (section 3.6.2 - 3.6.5).

3.6.1 System architecture overview

Choreo is implemented in C++ on the Robot Operating Sys-
tem’s (ROS) Kinetic Release on Ubuntu 16.04 [54]. The
C++ code is open-source and available online1. Drawing
inspiration of the Godel system from ROS industrial [57],
Choreo’s system architecture is designed to be modular and
flexible: graphical user interface (GUI) module, data IO mod-
ule, visualization module, and core planning engine mod-
ules are all implemented as standalone ROS nodes. Instead
of directly communicating to each other, the communica-
tion between these modules is coordinated by a central core
node using formatted ROS messages and services (figure
10). This enables a clean decoupling between modules that
offers users the flexibility to plug in and experiment with
their customized sequence or motion planner without chang-
ing the rest of the codebase. The GUI is implemented as a
simple Qt plugin for the Rviz visualization platform to pro-
vide buttons, sliders, and data IO to help users inport and
export their data and navigate them through the planning
process.

3.6.2 Assembly problem setup

Robots and end effectors are specified using a Unified Robot
Description Format (URDF) file2 in Choreo, which is an
XML format data that contains robot’s link geometry, joint
limitation, and other related data. To specify customized end
effector, users need to have the STL mesh for the end effec-
tor (used for collision checking) and create a URDF file to
link the imported geometry to a desired robot link. Static
collision objects in the work environment are imported as
STL meshes and linked to the robot’s URDF file.

The geometry of spatial trusses can be specified using
the node-connectivity format described in section 3.2. The
diameter of the truss element is defined by the extruder’s
nozzle. A decomposition can be added to the geometry model
by simply assigning a layer index to each element. The au-
thors develop a simple parser based on the graphical pro-
gramming platform Grasshopper [21], to have a visually friendly
layer tagging workflow. The relative position between the
the build platform and the robot’s base can be calibrated
from the robot and input into the system by a 3D vector us-
ing the GUI widget.

3.6.3 Sequence planning

Currently, Choreo’s sequence planner is powered by a cus-
tomized backtracking search engine (section 3.3.2). The an-

1 https://github.com/yijiangh/Choreo
2 http://wiki.ros.org/urdf

alytical kinematics computation is performed through the
ikfast kinematics plugin [31]. The collision check between
robot and the environment is implemented using the colli-
sion checking interface provided by Moveit! [68].

3.6.4 Motion planning

The semi-constrained Cartesian planner is implemented based
on the Descartes planning package from ROS-Industrial [56].
The sparse ladder graph and the RRT* algorithm is imple-
mented by the author using the Descartes package’s ladder
graph data structure. The retraction planner is a direct appli-
cation of the Descartes package with direction vector sam-
pling.

The transition planner utilizes the motion planner plugin
interface of the Moveit! motion planning framework [68].
Choreo uses the STOMP planner from ROS-industrial [33][58]
as the main single-query motion planner, but can be easily
configured to work other motion planners.

3.6.5 Post-processing and execution

After the motion planning is finished, the computed trajec-
tories are tagged with meta-data associated to the assembly
tasks and can be exported as a JSON file. The core module
coordinates with the simulation module to display the cho-
sen assembly tasks’ trajectories in Rviz (figure 11).

Next, extra post processing and fine-tuning can be per-
formed in other programming platforms. In all the case stud-
ies in this work, a customized C# JSON file parser is imple-
mented in Grasshopper [21]. The KUKA|PRC package [2]
and the Robots plugin [63] are used to post-process the tra-
jectory into a KUKA Robot Language (KRL) file and ABB
RAPID file for simulation and execution. The exported tra-
jectory can be configured easily to work in other parametric
design platforms and be adapted to other robotic simulation
packages such as HAL [60] and Jeneratiff [12]. As described
in section 2.1, such simulation tools are useful for visualiz-
ing a generated robotic motion plan and generates robotic
brand-specific instruction code within the Grasshopper en-
vironment.

Hardware-wise, a customized extrusion system was de-
signed and assembled by Archi-Solution Workshop3. A de-
tailed description of the end effector, extrusion system, and
cooling system can be found in [78] as well as the online
supplementary materials of [30].

4 Case Studies

To illustrate the capabilities of Choreo, this section describes
three case studies that utilize Choreo’s power to automati-

3 http://www.asworkshop.cn/



Automated motion planning for robotic assembly of discrete architectural structures 17

Sequence planner

USER INTERFACE

DATA + VISUALIZATION

PLANNING ENGINE

Motion planner

Semi-constrained 
Cartesian planner Retraction planner Transition planner

GUI

Assembly geometry parser

Assembly sequence parser

Robot trajectory parser

Core
Execution gatekeeperSimulation execution

Assembly geometry visualizerRviz

Backtrack search engine

Moveit! interface

IKfast kinematics plugin OMPL CHOMP STOMP

Fig. 10 Choreo’s system architecture.

Fig. 11 Screenshot of Choreo at trajectory simulation stage.

cally plan for feasible robotic trajectories for spatial extru-
sion of complex spatial trusses with non-standard topolo-
gies. The presented case studies have fundamentally dif-
ferent topologies and scales: 3D Voronoi (section 4.1) and
topology optimized simply-supported beam (small and large
scale, section 4.2). Model-related data, together with statis-
tics on assembly planning and fabrication time are presented
in table 2. The user-guided decomposition of the models are
shown in figure 12. All computational experiments were per-
formed on a Linux virtual machine with 4 processors and 16
GB of RAM on a desktop PC with a quad-core Intel Xeon
CPU. Additional case studies on robotic extrusion of non-
standard topologies can be found in [29][28].

(b)(a)

Fig. 12 The user-specified decomposition. (a) 3D Voronoi has 10 lay-
ers (b) Topopt beam has 53 layers. In the image, six colors are used
cyclically to depict layers.

4.1 3D Voronoi

The 3D Voronoi design was generated by randomly sam-
pling points within a rectangular solid, and then using the
3D Voronoi component in Grasshopper [21] together with
Kangaroo2 [53] to initiate the 3D Voronoi pattern. A sphere
collision algorithm was used to force the element lengths to
have low variance. A KUKA KR6-R900 robot was used to
execute the extrusion. Figure 13 shows the design and fab-
rication of this structure. Because of the Voronoi-generating
algorithm, there is low variation in node valence, and most
nodes only connect four elements. Elements are well sup-
ported during each construction step, and there are few very
long elements. The internal topology does not have a triv-
ial layer-based pattern. Thus, it is unintuitive for humans to



18 Yijiang Huang1 et al.

Model
Node
count

Element
count

Layer
count

Sequence
planning
time [s]

Extrusion
planning
time [s]

Transition
planning
time [s]

Fabrication time [hr] Size [mm]

3D Voronoi
(sec 4.1) 148 292 10 2299 1200 1286 (RRT*) 3.2 150 * 150 * 320

Topopt beam (small)
(sec 4.2.1) 121 271 53 2170 1271 893 (STOMP) 3.6 400 * 100 * 100

Topopt beam (large)
(sec 4.2.2) 121 271 53 1577 1809 553 (STOMP) - 2800 * 700 * 700

Table 2 Input model information, computational statistics, and fabrication time of the case studies. Layer count is the number of layers used in
the user-generated decomposition (figure 12).

Fig. 13 3D Voronoi design, robotic trajectories with RRT*, and final
extruded result. A fixed-base KUKA KR6-R900 robotic arm is used.

find a sequence manually, and the Choreo platform proves
helpful.

However, elements at the boundary have smaller node
valences and very long length. Even though the geometri-
cally planned trajectory is feasible, the extruded element de-
viates from its ideal position because of the material’s ther-
mal wrapping. This deviation is sometimes large enough
that the robot is not able to connect to these elements in
the subsequence extrusion processes by following the com-
puted trajectories. This issue is resolved by adding micro-
path modifications to the computed Cartesian extrusion path
in the post processing stage to extrude a “knot” at the node
to compensate for the inaccuracy brought by the thermal be-
havior of the material.

4.2 Topology optimized simply-supported beam

Using the ground structure topology optimization method
described in [28], a simply-supported beam was designed
for the loads and boundary conditions shown in figure 14
(a), (b). The resulting topology is fairly irregular when com-
pared to a standardized mesh topology. The beam is scaled
to a small size and a large size and two different machine
setups are used for assembly planning. The large-scale ex-
ample is presented to demonstrate the potential of applying

Choreo at the scale of a real building component, which in
particular fits into the context of construction robotics.

4.2.1 Small scale

Fig. 14 Topology optimized simply-supported beam, with (a-b) topol-
ogy optimization input and result, (c) robot trajectories with STOMP,
and (d) final extruded result. A fixed-base KUKA KR6-R900 robot is
used.

The small-scale beam spans 400 millimeters. A fixed-
base KUKA KR6-R900 (maximal reach 0.9m) robot is used
to execute the extrusion. The average element length of the
model is fairly long, and element length variation is low
because the design is generated from a regular base mesh.
However, the geometric configurations generated from these
elements is not trivial. The trajectory highlighted in figure 14
shows the corresponding tool center point traveling trajec-
tory from the transition planning result, indicating that the
robot’s configuration changes significantly between many
pairs of adjacent extrusions. As a result, trajectories that re-
spect joint limits and avoid collisions are long and unintu-
itive to humans.

4.2.2 Large scale

The large-scale beam has a span of 2.8 meters, with 0.7
meters in thickness and height. A 5.4-meter linear track is
added to an ABB IRB6640-180-280 robotic arm (maximal



Automated motion planning for robotic assembly of discrete architectural structures 19

reach 2.8m) to accommodate the scale of the beam. The ad-
ditional degree of freedom from the linear track expands the
feasible workspace of the robot. Specifically, this extra di-
mension increases the set of kinematic solutions, making it
easier to find a feasible joint configuration. In practice, the
movement of the six revolutional axes of the robotic arm is
preferred over the track’s movement for accuracy and energy
consumption reason. In this paper, in order to to penalize ex-
tra movement of the prismatic linear joint, an extra penalty
weighting factor is added to linear track’s joint movement
when computing the L2 distance between joint configura-
tions for constructing ladder graph in the semi-constrained
Cartesian planning module (section 3.4.1). The analytical
inverse kinematics of the robot is done by discretizing the
prismatic joint and attempting 6-dof IK. This discretization
resolution also balances the completeness and RAM over-
head of the computation and could be iteratively increased
to find a feasible solution or limit excessive base movement.
In this experiment, the prismatic joint is discretized every
0.01 m over a full length 5.4 m. A more in-depth investiga-
tion of the robot base placement, using reachability analysis
[46], is under investigation for future work. The resulting
simulated assembly trajectory is shown in figure 15.

Fig. 15 Simulated end-effector trajectory of an ABB IRB6640-185-
280 mounted on a 5.4-meter linear track to spatially extrude of the
large-scale topology optimized beam.

5 Conclusion

5.1 Summary of contributions

This paper presents the first attempt to rigorously formu-
late the architectural robotic assembly planning problem and
provide an integrated algorithmic solution. A new hierarchi-
cal planning algorithm is proposed to solve assembly prob-
lems with long planning horizons and complex geometry.

This paper also presents a proof-of-concept software im-
plementation, called Choreo, which is a hardware- and ap-
plication agnostic. Choreo can be easily configured to work

with industrial robots across brands, sizes, and joint spaces.
Three case studies involving spatial trusses with non-standard
topologies, including two real fabrication experiments and
one large-scale assembly simulation, are presented to demon-
strate the new fabrication possibilities enabled by applying
the proposed planning framework.

5.1.1 Potential impact

The case studies presented in this work have demonstrated
how the proposed assembly planning framework’s integra-
tion into existing digital design workflow can support topol-
ogy as a fundamental design variable on designers’ palette
for robotic assembly. The emergence of this automated plan-
ning system can provide a better way for designers to inter-
act with robots, shifting the machine programming experi-
ence back to high-level tasks in the architectural language of
shape and topology.

On the other hand, the flexibility and the efficiency of
Choreo creates a testbed for educators, researchers, and prac-
titioners to explore novel robotic fabrication and assembly
applications more boldly. It provides a general common ground
for future research in assembly-related sequence and motion
planner, and creates a bridge between architectural robotics
research community and task and motion planning research
community.

5.1.2 Limitation and future work

One key limitation of the current work is on the need of hu-
man intervention for model decomposition to accelerate the
sequence planner. An automatic decomposition algorithm
will eliminate this last bit of human intervention and fully
automate the planning process.

Potential directions of future investigation are summa-
rized as follows:

Backtrack between planning layers When the planning sys-
tem encounters a planning failure in any layer in the hierar-
chy, there is no backtracking mechanism provided to allow
it to backtrack across planning layers. Thus, the hierarchical
planning algorithm is not complete for the entire system, i.e.
guaranteed to find a solution if one exists, although the al-
gorithm proposed in each level of the hierarchy is complete.
Existing work in TAMP has devised various way to allow
this geometric backtracking across planning layers. The in-
tegration of some of this research is left as future work.

Extension to other robotic assembly applications All the
algorithmic descriptions and case studies presented in this
work are performed in the context of the specific application
of robotic spatial extrusion. Generalizing the proposed plan-
ning framework to other assembly applications, such as spa-
tial positioning, requires little modification of the algorithm.



20 Yijiang Huang1 et al.

These small modifications include different predefined plan
skeletons, different constraints on the end effector’s orien-
tation in the semi-constrained Cartesian planner, and exten-
sions to the assembly sequence data format.

5.1.3 Concluding remark

Automatic assembly planning has been a key missing link
in the established digital design-robotic assembly workflow.
Architectural robotic assembly problems have posted unique
technical challenges, including (1) long planning horizon
and (2) structural stiffness and stability constraints for as-
sembly sequence planning. This paper presents a new algo-
rithmic framework and a software tool called Choreo to fill
in this missing link and thus clears away the technical bar-
rier of assembly planning that has been congesting the work-
flow and limiting design-build freedom. Although Choreo is
still in its early stage, its flexibility and speed have already
suggested an exciting future possibility: fabrication and as-
sembly logic related to robotic constructibility could be in-
tegrated as a driver in iterative conceptual design, pushing
the role of technical assessment from checking a nearly fi-
nalized design to an early-stage design aid.

Acknowledgements The authors want to acknowledge Thomas Cook,
Khanh Nguyen, and Kodiak Brush at MIT for their work on construct-
ing the early-stage prototype of the software and hardware presented in
this work. The authors would also like to thank Jonathan Meyer from
ROS-Industrial for his insightful discussion on github and Zhongyuan
Liu from University of Science and Technology of China for his help
on generating the 3D Voronoi shape. The authors want to thank Archi-
Solution Workshop (http://www.asworkshop.cn/) for their support on
the designing and assembling of the mechanical extrusion system used
in the case studies. Caelan Garrett acknowledges the support from NSF
grants 1420316, 1523767 and 1723381, from AFOSR FA9550-17-1-
0165, from ONR grant N00014-14-1-0486, and an NSF GRFP fellow-
ship with primary award number 1122374. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the sponsors.

References

1. Alami, R., Laumond, J.P., Siméon, T.: Two manipulation planning
algorithms. In: WAFR Proceedings of the workshop on Algorith-
mic foundations of robotics, pp. 109–125. A. K. Peters, Ltd., Nat-
ick, MA, USA (1994)

2. Braumann, J., Brell-Cokcan, S.: Parametric robot control: inte-
grated cad/cam for architectural design. In: Proceedings of the
31st Annual Conference of the Association for Computer Aided
Design in Architecture (ACADIA) (2011)

3. Cormen, T.H.: Introduction to algorithms. MIT press (2009)
4. Dai, C., Wang, C.C., Wu, C., Lefebvre, S., Fang, G., Liu, Y.:

Support-free volume printing by multi-axis motion. ACM Trans-
actions on Graphics (TOG) (2018). (in press)

5. De Fazio, T., Whitney, D.: Simplified generation of all mechanical
assembly sequences. IEEE Journal on Robotics and Automation
3(6), 640–658 (1987)

6. De Maeyer, J., Moyaers, B., Demeester, E.: Cartesian path plan-
ning for welding robots: Evaluation of the descartes algorithm. In:
Proceedings of the 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (2017)

7. De Mello, L.H., Sanderson, A.C.: And/or graph representation of
assembly plans. IEEE Transactions on robotics and automation
6(2), 188–199 (1990)

8. Dechter, R.: Constraint processing. Morgan Kaufmann (2003)
9. Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P., Sorkine-

Hornung, O., Pauly, M.: Assembling self-supporting structures.
ACM Transactions on Graphics (TOG) 33(6), 214 (2014)

10. Dogar, M., Spielberg, A., Baker, S., Rus, D.: Multi-robot grasp
planning for sequential assembly operations. In: Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pp.
193–200. IEEE (2015)

11. Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., Nebel,
B.: Semantic Attachments for Domain-Independent Planning Sys-
tems, p. 99115. Springer Tracts in Advanced Robotics. Springer
(2012)

12. Dritsas, S.: A digital design and fabrication library. In: Proceed-
ings of the Symposium on Simulation for Architecture & Urban
Design, pp. 75–80 (2015)

13. Eversmann, P., Gramazio, F., Kohler, M.: Robotic prefabrication
of timber structures: towards automated large-scale spatial assem-
bly. Construction Robotics 1(1-4), 49–60 (2017)

14. Fu, C.W., Song, P., Yan, X., Yang, L.W., Jayaraman, P.K., Cohen-
Or, D.: Computational interlocking furniture assembly. ACM
Transactions on Graphics (TOG) 34(4), 91 (2015)

15. Garrett, C.R., Lozano-Pérez, T., Kaelbling, L.P.: Ffrob: Leverag-
ing symbolic planning for efficient task and motion planning. The
International Journal of Robotics Research 37(1), 104–136 (2018)

16. Garrett, C.R., Lozano-Pérez, T., Kaelbling, L.P.: Sampling-based
methods for factored task and motion planning. arXiv preprint
arXiv:1801.00680 (2018)

17. Gelber, M.K., Hurst, G., Bhargava, R.: Freeform assembly plan-
ning. arXiv:1801.00527 (2018)

18. Gelber, M.K., Hurst, G., Comi, T.J., Bhargava, R.: Model-guided
design and characterization of a high-precision 3d printing process
for carbohydrate glass. Additive Manufacturing 22, 38–50 (2018)

19. Giftthaler, M., Sandy, T., Dörfler, K., Brooks, I., Buckingham, M.,
Rey, G., Kohler, M., Gramazio, F., Buchli, J.: Mobile robotic fab-
rication at 1: 1 scale: the in situ fabricator. Construction Robotics
1(1-4), 3–14 (2017)

20. Gramazio, F., Matthias, K., Willmann, J.: The robotic touch. Park
Books (2014)

21. Grasshopper, R.: Grasshopper rhinoceros.
http://www.grasshopper3d.com/ (2018). Last accessed July
10 2018

22. Hack, N., Lauer, W.V.: Mesh-mould: Robotically fabricated spa-
tial meshes as reinforced concrete formwork. Architectural Design
84(3), 44–53 (2014)

23. Hauser, K., Latombe, J.C.: Multi-modal motion planning in non-
expansive spaces. The International Journal of Robotics Research
29(7), 897–915 (2010)

24. Hauser, K., Ng-Thow-Hing, V.: Randomized multi-modal motion
planning for a humanoid robot manipulation task. The Interna-
tional Journal of Robotics Research 30(6), 678–698 (2011)

25. Heger, F.W.: Assembly planning in constrained environments:
Building structures with multiple mobile robots. Ph.D. thesis,
Carnegie Mellon University (2010)

26. Helm, V., Willmann, J., Thoma, A., Piškorec, L., Hack, N.,
Gramazio, F., Kohler, M.: Iridescence print: Robotically printed
lightweight mesh structures. 3D Printing and Additive Manufac-
turing 2(3), 117–122 (2015)

27. Helmert, M.: The fast downward planning system. Journal of Ar-
tificial Intelligence Research 26, 191–246 (2006)

http://www.asworkshop.cn/


Automated motion planning for robotic assembly of discrete architectural structures 21

28. Huang, Y., Carstensen, J., Mueller, C.: 3d truss topology optimiza-
tion for automated robotic spatial extrusion. In: Proceedings of the
International Association for Shell and Spatial Structures (IASS)
Symposium 2018 (2018)

29. Huang, Y., Carstensen, J., Tessmer, L., Mueller, C.: Robotic
extrusion of architectural structures with nonstandard topology.
In: Robotic Fabrication in Architecture, Art and Design 2018.
Springer (2018)

30. Huang, Y., Zhang, J., Hu, X., Song, G., Liu, Z., Yu, L., Liu, L.:
Framefab: Robotic fabrication of frame shapes. ACM Transac-
tions on Graphics (TOG) 35(6), 224 (2016)

31. IKFast: Ikfast: The robot kinematics compiler.
http://openrave.org/docs/0.8.2/openravepy/ikfast/ (2018). Last
accessed July 22 2018

32. Jeffers, M.: Autonomous robotic assembly with variable material
properties. In: Robotic Fabrication in Architecture, Art and Design
2016, pp. 48–61. Springer (2016)

33. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.:
Stomp: Stochastic trajectory optimization for motion planning. In:
2011 IEEE International Conference on Robotics and Automation,
pp. 4569–4574 (2011)

34. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal
motion planning. arXiv:1105.1186 (2011)

35. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Prob-
abilistic roadmaps for path planning in high-dimensional config-
uration spaces. IEEE Transactions on Robotics and Automation
12(4), 566–580 (1996)

36. Krontiris, A., Bekris, K.: Dealing with difficult instances of object
rearrangement. In: Robotics: Science and Systems (RSS) (2015).
DOI 10.15607/RSS.2015.XI.045

37. Krontiris, A., Bekris, K.E.: Efficiently solving general rear-
rangement tasks: A fast extension primitive for an incremental
sampling-based planner. In: International Conference on Robotics
and Automation (ICRA), pp. 3924–3931. IEEE (2016)

38. Lagriffoul, F.: On benchmarks for combined task and motion plan-
ning. In: Robotics: Science and Systems (RSS) 2016 Workshop on
Task and Motion Planning (2016)

39. Lagriffoul, F., Andres, B.: Combining task and motion planning:
A culprit detection problem. The International Journal of Robotics
Research 35(8), 890–927 (2016)

40. Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., Karlsson, L.:
Efficiently combining task and motion planning using geomet-
ric constraints. The International Journal of Robotics Research
33(14), 1726–1747 (2014)

41. LaValle, S.M.: Planning algorithms. Cambridge university press
(2006)

42. Livesley, R.K.: A computational model for the limit analysis of
three-dimensional masonry structures. Meccanica 27(3), 161–172
(1992)

43. Lo, K.Y., Fu, C.W., Li, H.: 3d polyomino puzzle. In: ACM Trans-
actions on Graphics (TOG), vol. 28, p. 157. ACM (2009)

44. Lozano-Pérez, T.: Spatial planning: A configuration space ap-
proach. IEEE transactions on computers (2), 108–120 (1983)

45. Lozano-Pérez, T., Kaelbling, L.P.: A constraint-based method for
solving sequential manipulation planning problems. In: Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pp. 3684–3691. IEEE (2014)

46. Makhal, A., Goins, A.K.: Reuleaux: Robot base placement by
reachability analysis. arXiv:1710.01328 (2017)

47. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A.,
Veloso, M., Weld, D., Wilkins, D.: Pddl-the planning domain defi-
nition language. Tech. rep., Yale Center for Computational Vision
and Control (1998)

48. McGuire, W., Gallagher, R., Ziemian, R.: Matrix Structural Anal-
ysis. Wiley (1999)

49. Mueller, S., Im, S., Gurevich, S., Teibrich, A., Pfisterer, L., Guim-
bretière, F., Baudisch, P.: Wireprint: 3d printed previews for fast
prototyping. In: Proceedings of the 27th annual ACM symposium
on User interface software and technology, pp. 273–280. ACM
(2014)

50. Parascho, S., Gandia, A., Mirjan, A., Gramazio, F., Kohler, M.:
Cooperative fabrication of spatial metal structures. In: Fabricate
2017, pp. 24–29. UCL Press (2017)

51. Peng, H., Wu, R., Marschner, S., Guimbretière, F.: On-the-fly
print: Incremental printing while modelling. In: Proceedings of
the 2016 CHI Conference on Human Factors in Computing Sys-
tems, pp. 887–896. ACM (2016)

52. Phear, J.B.: Elementary Mechanics. MacMillan, Cambridge
(1850)

53. Piker, D.: Kangaroo physics.
https://www.food4rhino.com/app/kangaroo-physics (2018).
Last accessed July 26 2018

54. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,
J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating
system. In: ICRA workshop on open source software, vol. 3, p. 5.
Kobe, Japan (2009)

55. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: Chomp: Gra-
dient optimization techniques for efficient motion planning. In:
International Conference on Robotics and Automation, pp. 489–
494. IEEE (2009)

56. ROS-I: ROS Industrial - Descartes. https://github.com/ros-
industrial-consortium/descartes (2018). Last accessed March 14
2018

57. ROS-I: ROS Industrial - Godel. https://github.com/ros-industrial-
consortium/godel (2018). Last accessed March 14 2018

58. ROS-I: ROS Industrial - Industrial Moveit. https://github.com/ros-
industrial/industrial moveit (2018). Last accessed March 14 2018

59. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H.,
Pan, J., Patil, S., Goldberg, K., Abbeel, P.: Motion planning with
sequential convex optimization and convex collision checking.
The International Journal of Robotics Research 33(9), 1251–1270
(2014)

60. Schwartz, T.: Hal: Extension of a visual programming language to
support teaching and research on robotics applied to construction.
In: Robotic Fabrication in Architecture, Art and Design 2012, pp.
92–101. Springer (2012)

61. Schwartzburg, Y., Pauly, M.: Fabrication-aware design with inter-
secting planar pieces. In: Computer Graphics Forum, vol. 32, pp.
317–326. Wiley Online Library (2013)

62. Siméon, T., Laumond, J.P., Corts, J., Sahbani, A.: Manipulation
planning with probabilistic roadmaps. The International Journal
of Robotics Research 23(7-8), 729–746 (2004)

63. Soler, V.: Robots plugin for Grasshopper.
https://github.com/visose/Robots (2018). Last accessed June
20 2018

64. Søndergaard, A., Amir, O., Eversmann, P., Piškorec, L., Stan, F.,
Gramazio, F., Kohler, M.: Topology optimization and robotic fab-
rication of advanced timber space-frame structures. In: Robotic
Fabrication in Architecture, Art and Design 2016, pp. 190–203.
Springer (2016)

65. Song, P., Fu, C.W., Cohen-Or, D.: Recursive interlocking puzzles.
ACM Transactions on Graphics (TOG) 31(6), 128 (2012)

66. Stilman, M., Kuffner, J.J.: Planning among movable obstacles
with artificial constraints. The International Journal of Robotics
Research 27(11-12), 1295–1307 (2008)

67. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipu-
lation planning among movable obstacles. In: Proceedings 2007
IEEE International Conference on Robotics and Automation, pp.
3327–3332 (2007)

68. Sucan, I.A., Chitta, S.: Moveit! http://moveit.ros.org (2018). Last
accessed March 14 2018



22 Yijiang Huang1 et al.

69. Tai, A.S.C.: Design for assembly: a computational approach to
construct interlocking wooden frames. Master’s thesis, Mas-
sachusetts Institute of Technology (2012)

70. Tam, K.M., Marshall, D.J., Gu, M., Kim, J., Huang, Y., Lavallee,
J.A., Mueller, C.T.: Fabrication-aware structural optimisation of
lattice additive-manufactured with robot-arm. International Jour-
nal of Rapid Manufacturing 7(2-3) (2018)

71. Toussaint, M.: Logic-geometric programming: An optimization-
based approach to combined task and motion planning. In: Pro-
ceedings of the 24th International Conference on Artificial Intelli-
gence, IJCAI’15, pp. 1930–1936. AAAI Press (2015)

72. UNESCE: Press release ece/stat/05/p03, geneva,
world robotics survey (october 11, 2005).
http://www.unece.org/fileadmin/DAM/press/pr2005/05stat p03e.pdf
(2005). Accessed March 14 2018

73. Wikipedia: Kuka robot language - wikipedia, the free ency-
clopedia. https://en.wikipedia.org/wiki/KUKA Robot Language
(2018). Last accessed April 16 2018

74. Wilson, R.H.: On geometric assembly planning. Ph.D. thesis,
Stanford University (1992)

75. Woltery, J.D.: On the automatic generation of assembly plans. In:
Proceedings, 1989 International Conference on Robotics and Au-
tomation, pp. 62–68 (1989)

76. Wu, R., Peng, H., Guimbretière, F., Marschner, S.: Printing arbi-
trary meshes with a 5dof wireframe printer. ACM Transactions on
Graphics (TOG) 35(4), 101 (2016)

77. Xin, S., Lai, C.F., Fu, C.W., Wong, T.T., He, Y., Cohen-Or, D.:
Making burr puzzles from 3d models. In: ACM Transactions on
Graphics (TOG), vol. 30, p. 97. ACM (2011)

78. Yu, L., Huang, Y., Liu, Z., Xiao, S., Liu, L., Song, G., Wang, Y.:
Highly informed robotic 3d printed polygon mesh: A novel strat-
egy of 3d spatial printing. In: Proceedings of the 36st Annual
Conference of the Association for Computer Aided Design in Ar-
chitecture (ACADIA), pp. 298–307 (2016)


	1 Introduction
	2 Related work
	3 Assembly planning framework
	4 Case Studies
	5 Conclusion

