blog
-
"A deep sense of responsibility and a desire to contribute to his country and its people": B.V. Doshi Receives the 2018 Pritzker Prize2018-03-22, Author: Mohamed Ismail
On the morning of March 7, 2018, it was announced that Balkrishna V. Doshi would be the 2018 recipient of the 45th Pritzker Prize in Architecture – the profession’s highest accolade. With a career spanning nearly 70 years, B. V. Doshi is the first South Asian architect to receive the Pritzker Architecture Prize.
Born to a Hindu family in the city of Pune in 1927, Doshi grew up around his grandfather’s furniture workshop. According to the Pritzker organization: "Alongside a deep respect for Indian history and culture, elements of his youth—memories of shrines, temples, and bustling streets; scents of lacquer and wood from his grandfather’s furniture workshop—all find a way into his architecture." Shortly after studying at the Sir J.J. School of Architecture in Mumbai, Doshi moved to Europe to practice as an architect. In 1950, Doshi attended the historic Congrès Internationaux d'Architecture Moderne (CIAM) conference in Hoddeson, England. Consequently, he found himself to be the only Indian attending a presentation of Le Corbusier’s design for Chandigarh, the future state capital of Punjab. Doshi requested to work for Le Corbusier on the spot and was told to submit a letter rather than a portfolio; on the basis of his handwriting alone, Doshi was able to join Le Corbusier’s office without pay.
BV Doshi in his studio at Sangath, Ahmedabad. Image courtesy of the Vastu Shilpa Foundation
BV Doshi and Le Corbusier touring Villa Sodhan, Ahmedabad. Image courtesy of the Architectural Review
On the surface, B.V. Doshi’s work reminds viewers of Louis Kahn’s geometries and Le Corbusier’s materiality – both of them were former collaborators and mentors to Doshi. But over the span of his career, Doshi developed an architectural language all his own and uniquely Indian. As the Pritzker organization stated: “With a deep sense of responsibility and a desire to contribute to his country and its people through high quality, authentic architecture, he has created projects for public administrations and utilities, educational and cultural institutions, and residences for private clients, among others. Doshi is acutely aware of the context in which his buildings are located.” Amidst his vast portfolio, Doshi’s most acclaimed projects include the Aranya Low-Cost Housing Project, his office, Sangath (“an ongoing school where one learns, unlearns and relearns.”), and the Amdavad ni Gufa (Ahmedabad, 1995). As Louisa Hutton said in an introduction to his lecture at the Royal Academy in London, “Lamenting the degeneration of the city into a place for mere commercial transaction, Mr. Doshi argues for the creation of an authentic public realm of such quality that it will lodge in our memories…He sees architecture and in particular the open spaces between buildings…as being capable of fostering community relationships, social cohesion and, as a result, meaningful lives.” Doshi also founded the Center for Environmental Planning and Technology, a premier school of architecture in India, where he is dean emeritus.
BV Doshi's drawing of Sangath, Ahmedabad. Image courtesy of Archdaily
B.V. Doshi recently came to the attention of Digital Structures through his work with renowned Indian engineer, Mahendra Raj. Alongside designers like Charles Correa and Raj Rewal, Raj and Doshi are referred to as “fathers of Indian Modernism”, crafting an architectural legacy that continues to inspire designers to this day. Their impact on the education and practice of architects and engineers cannot be overstated – they brought the techniques and structural systems developing abroad and applied them to a newly independent nation’s search for a global identity. Both were educated and trained abroad but returned to India shortly after its independence to establish their own practices. As Mahendra Raj stated in an interview with Hans Ulrich Obrist (Domus, 2014): “Our common objective was to set up practices here, find our own roots and rise to the same stature that other countries had attained. We sought an Indian idiom that expressed our ancient culture but was in tune with modern times…For us engineers, there was the exposure to the new materials of concrete, steel, and precast concrete.”
Recounting his first interaction with Doshi, Raj said, “I knew of Doshi when I was working in Chandigarh on Le Corbusier’s building. I used to see these drawings that came from Le Corbusier’s office in Paris — they were very stylish, with things that we couldn’t decipher. We thought some Frenchman had drawn them, but then we found out it was Doshi making the drawings we were receiving.” Through their collaborations, Mahendra Raj and B.V. Doshi designed projects that are still considered feats of engineering and design to this day. These projects include the Tagore Memorial Hall (Ahmedabad, 1971) built with long-spanning folded plates of reinforced concrete, and Premabhai Hall (Ahmedabad, 1972) with its monumental cantilevers.
Tagore Hall in Ahmedabad, by BV Doshi and Mahendra Raj. Image courtesy of Architexturez
Premabhai Hall in Ahmedabad, by BV Doshi and Mahendra Raj. Image courtesy of Architexturez
Today, designers and researchers everywhere are following in their footsteps – including here, at MIT. With the support of the MIT Tata Center for Research and Design, Digital Structures is researching the design of materially-efficient structural elements in multi-story housing construction for India. This research has already benefited from a study of the work of B.V. Doshi and Mahendra Raj, and there is still much more to learn.
Speculative design of shaped beam structure for India. Image courtesy of Digital Structures
Having just celebrated his 90th birthday this past August, Doshi has already been the recipient of the Officer of the Order of Arts and Letters of France (2011); Aga Khan Award for Architecture (1993-1995) for Aranya Community Housing; and Padma Shree National Award, Government of India (1976) among other recognitions. Doshi is also a Fellow of the Royal Institute of British Architects, an Honorary Fellow of the American Institute of Architects, and served on the Pritzker Prize Jury from 2005 to 2007. For the Architectural Review in 2016, William J.R. Curtis noted that the architect’s best work, “draws together both Doshi’s international inspirations and the results of his search for fundamentals in several areas of Indian tradition…Doshi’s aim of re-linking modern man with the rhythms of nature extends a Modernist utopia while returning to ancient wisdom.”
Digital Structures would like to add to the chorus of congratulations to Balkrishna V. Doshi on his well-earned award – we hope that this moment will be one of many to bring international attention to a rich legacy of architectural design and structural engineering in South Asia.
"A deep sense of responsibility and a desire to contribute to his country and its people": B.V. Doshi Receives the 2018 Pritzker Prize
2018-03-22
Author:
On the morning of March 7, 2018, it was announced that Balkrishna V. Doshi would be the 2018 recipient of the 45th Pritzker Prize in Architecture – the profession’s highest accolade. With a career spanning nearly 70 years, B. V. Doshi is the first South Asian architect to receive the Pritzker Architecture Prize.
Born to a Hindu family in the city of Pune in 1927, Doshi grew up around his grandfather’s furniture workshop. According to the Pritzker organization: "Alongside a deep respect for Indian history and culture, elements of his youth—memories of shrines, temples, and bustling streets; scents of lacquer and wood from his grandfather’s furniture workshop—all find a way into his architecture." Shortly after studying at the Sir J.J. School of Architecture in Mumbai, Doshi moved to Europe to practice as an architect. In 1950, Doshi attended the historic Congrès Internationaux d'Architecture Moderne (CIAM) conference in Hoddeson, England. Consequently, he found himself to be the only Indian attending a presentation of Le Corbusier’s design for Chandigarh, the future state capital of Punjab. Doshi requested to work for Le Corbusier on the spot and was told to submit a letter rather than a portfolio; on the basis of his handwriting alone, Doshi was able to join Le Corbusier’s office without pay.
BV Doshi in his studio at Sangath, Ahmedabad. Image courtesy of the Vastu Shilpa Foundation
BV Doshi and Le Corbusier touring Villa Sodhan, Ahmedabad. Image courtesy of the Architectural Review
On the surface, B.V. Doshi’s work reminds viewers of Louis Kahn’s geometries and Le Corbusier’s materiality – both of them were former collaborators and mentors to Doshi. But over the span of his career, Doshi developed an architectural language all his own and uniquely Indian. As the Pritzker organization stated: “With a deep sense of responsibility and a desire to contribute to his country and its people through high quality, authentic architecture, he has created projects for public administrations and utilities, educational and cultural institutions, and residences for private clients, among others. Doshi is acutely aware of the context in which his buildings are located.” Amidst his vast portfolio, Doshi’s most acclaimed projects include the Aranya Low-Cost Housing Project, his office, Sangath (“an ongoing school where one learns, unlearns and relearns.”), and the Amdavad ni Gufa (Ahmedabad, 1995). As Louisa Hutton said in an introduction to his lecture at the Royal Academy in London, “Lamenting the degeneration of the city into a place for mere commercial transaction, Mr. Doshi argues for the creation of an authentic public realm of such quality that it will lodge in our memories…He sees architecture and in particular the open spaces between buildings…as being capable of fostering community relationships, social cohesion and, as a result, meaningful lives.” Doshi also founded the Center for Environmental Planning and Technology, a premier school of architecture in India, where he is dean emeritus.
BV Doshi's drawing of Sangath, Ahmedabad. Image courtesy of Archdaily
B.V. Doshi recently came to the attention of Digital Structures through his work with renowned Indian engineer, Mahendra Raj. Alongside designers like Charles Correa and Raj Rewal, Raj and Doshi are referred to as “fathers of Indian Modernism”, crafting an architectural legacy that continues to inspire designers to this day. Their impact on the education and practice of architects and engineers cannot be overstated – they brought the techniques and structural systems developing abroad and applied them to a newly independent nation’s search for a global identity. Both were educated and trained abroad but returned to India shortly after its independence to establish their own practices. As Mahendra Raj stated in an interview with Hans Ulrich Obrist (Domus, 2014): “Our common objective was to set up practices here, find our own roots and rise to the same stature that other countries had attained. We sought an Indian idiom that expressed our ancient culture but was in tune with modern times…For us engineers, there was the exposure to the new materials of concrete, steel, and precast concrete.”
Recounting his first interaction with Doshi, Raj said, “I knew of Doshi when I was working in Chandigarh on Le Corbusier’s building. I used to see these drawings that came from Le Corbusier’s office in Paris — they were very stylish, with things that we couldn’t decipher. We thought some Frenchman had drawn them, but then we found out it was Doshi making the drawings we were receiving.” Through their collaborations, Mahendra Raj and B.V. Doshi designed projects that are still considered feats of engineering and design to this day. These projects include the Tagore Memorial Hall (Ahmedabad, 1971) built with long-spanning folded plates of reinforced concrete, and Premabhai Hall (Ahmedabad, 1972) with its monumental cantilevers.
Tagore Hall in Ahmedabad, by BV Doshi and Mahendra Raj. Image courtesy of Architexturez
Premabhai Hall in Ahmedabad, by BV Doshi and Mahendra Raj. Image courtesy of Architexturez
Today, designers and researchers everywhere are following in their footsteps – including here, at MIT. With the support of the MIT Tata Center for Research and Design, Digital Structures is researching the design of materially-efficient structural elements in multi-story housing construction for India. This research has already benefited from a study of the work of B.V. Doshi and Mahendra Raj, and there is still much more to learn.
Speculative design of shaped beam structure for India. Image courtesy of Digital Structures
Having just celebrated his 90th birthday this past August, Doshi has already been the recipient of the Officer of the Order of Arts and Letters of France (2011); Aga Khan Award for Architecture (1993-1995) for Aranya Community Housing; and Padma Shree National Award, Government of India (1976) among other recognitions. Doshi is also a Fellow of the Royal Institute of British Architects, an Honorary Fellow of the American Institute of Architects, and served on the Pritzker Prize Jury from 2005 to 2007. For the Architectural Review in 2016, William J.R. Curtis noted that the architect’s best work, “draws together both Doshi’s international inspirations and the results of his search for fundamentals in several areas of Indian tradition…Doshi’s aim of re-linking modern man with the rhythms of nature extends a Modernist utopia while returning to ancient wisdom.”
Digital Structures would like to add to the chorus of congratulations to Balkrishna V. Doshi on his well-earned award – we hope that this moment will be one of many to bring international attention to a rich legacy of architectural design and structural engineering in South Asia.
Related projects:
Tags:
-
“Always question your own preconceptions”: Discussing the future of technology in architecture with Martha Tsigkari of Foster + Partners2018-02-15, Author: Demi Fang
Amidst the excitement of ACADIA 2017 on MIT’s campus, we found an opportunity to sit down and chat with Martha Tsigkari, who presented the New International Airport Mexico City (2020) with her colleagues. Tsigkari trained as an architect-engineer in Greece before obtaining a master’s degree at The Bartlett’s Architectural Computation programme at UCL, which she describes as “a computer science course for designers and architects.” She has been at the Applied Research + Development (AR+D) group at Foster + Partners’ London office ever since. In this post, we synthesize some of her thoughts on the future of technology in architecture, on the art of collaborating across disciplines, and on the humility necessary for innovation. Quotes have been edited for clarity.
The main focus of Tsigkari’s role and presentation of Foster + Partners’ highly anticipated New International Airport Mexico City was “evidence in performance-driven design. It’s all about how all the analysis and optimization can be incorporated through the life of the model to make for a better solution,” Tsigkari says.
On working with Arup, the engineers on the airport project, Tsigkari says that “it was a fantastic collaboration. The design process was not conventional in that we knew how we wanted the space frame to look aesthetically, so we developed all the processes necessary to create a structurally viable and well-performing space frame. Arup was confident in the processes we had and fully adapted our topology. They would receive our permutations of the final model, analyze them, and return with the sizes of the nodes and elements required. From that feedback we would make some aesthetic decisions; if we saw some really big nodes, for example, we knew that we had to do something with the topology and the smoothing of the space frame at that location.”
New International Airport Mexico City. Copyright Foster + Partners
Aside from performance-based design, the AR+D group at Foster + Partners focuses on multi-faceted and cutting-edge topics. “We see a huge future within architecture in Virtual Reality (VR),” Tsigkari says. “We also do a lot with simulations and optimization; we have written our own simulation engines that run tens or hundreds of times faster than those in the industry. I worked a lot with interoperability - making sure that this simulation works with all the different platforms that we’re using and that they talk with each other. We’re using those tools through optimization processes, whether it’s cognitive computing or genetic algorithms.
“We are also quite heavily involved with innovative interfaces to help designers understand the repercussions of their decisions very early on in the design process,” says Tsigkari. “We’re doing a lot of things with innovative materials and design-to-fabrication processes as well as looking into interesting things like the Internet of Things, seeing how we can make smarter buildings and cities that not only get constant feedback from the experiences that people have, but also better themselves without human input.
Tsigkari emphasizes the significance of nonlinear analyses and adaptive processes in future steps to improve the built environment. “There is a fundamental problem in the way we design most of our buildings: typically, it is a linear analysis for a specific pseudo-optimal state. For example, we design buildings based on the worst-case scenario of an earthquake. The resulting design is going to be useless for 90% of the time - it is only useful for the one-off chance that an earthquake happens. On the other hand, if you see how nature works, and if you embrace the idea of compliant mechanisms and nonlinear analysis, then you start embracing the ideas of embodied computation that Axel Kilian was explores in his tower, where you don’t optimize based on worst-case scenarios but instead try to design a form intelligent enough to optimize itself based on the feedback it gets and based on a specific state it always needs to return to. For me, this idea is extremely crucial. It feels like a natural next step in how we build.”
Tsigkari goes on to describe an ongoing research collaboration with Autodesk’s Panos Michalatos, Matt Jezyk and Amira Abdel-Rahmani: “We are essentially running nonlinear analyses for compliant mechanisms on the material level. More specifically, we are working with thermally actuated laminates. You can see situations where a facade is no longer a static element, but is externally actuated and adapts.
“A big part of our research right now is to understand the laminate layering required for the desired adaptations. My colleague Marcin Kosicki has been working with TensorFlow to develop a neural network, feeding in different laminates and the associated disfiguration of the material.”
Tsigkari maintains a humble, if not borderline cynical, perspective on the state of technology in architecture today. “Architecture as a profession is, I daresay, backward-looking. The industry is we are very slow to adapt to new technologies. It’s interesting to see that in the past decade, there has been a significant shift towards more computational design processes. I think what made the shift is the development of tools - for example, Grasshopper for Rhino - which made visual scripting quite intuitive. It introduced a different interface for users towards computer-science-based processes.”
How does Tsigkari train students towards such a rapidly evolving field? “What I learned at The Bartlett was not a particular software but computer science and algorithms: how to write a vanilla AI algorithm and how to potentially apply this to design problems. The trick is to get the underlying knowledge of what these processes are and how they could be used. You can use that knowledge in whatever software you want as long as you know what it is, how it works, and what you can expect from it.
“If what we see in Grasshopper is the skin of computational design, what we’re teaching is the bones and muscles of it; the underlying principles of computation. We are teaching algorithms that are not new - other fields have been using these for the past 60 years. In architecture we have started using them in the past decade. The reality is that we’re 60 years behind industries like rocket science, the chemical industries, or the army. It’s interesting to see how people feel extremely proud of using tools that have been around for over half a century and have been successfully used in many other industries with quite innovative outcomes.”
The interdisciplinary nature of the AR+D team helps. “We have people who have architectural backgrounds or engineering backgrounds, or both, but we also have artists, computer scientists, aeronautical engineers... I think that looking at what is achieved in other industries is absolutely key to being able to innovate within our own industry in terms of building processes, materials, and even techniques. Only now are we starting to look at how swarm robotics can affect buildings; techniques like these have been used extensively in other industries in the past with fantastic results. This kind of cross-referencing that can be beneficial for our industry.”
Martha Tsigkari with Francis Aish and Norman Foster at the keynote of Architectural Advances in Geometry Symposium 2016. Image courtesy of AAG 2016
It is by chance that Tsigkari occupies an unusual career path at the intersection of practice and academia. “My involvement with teaching is really driven by my late mentor, Alasdair Turner. He initiated the master’s programme I’m teaching at now, and he was this fantastic personality - a computer scientist, who had a lot of interest in tying computer science, architecture, and philosophy together.
“Alasdair took me from a world where I was unsure where I wanted to be and led me down a rabbit-hole to a completely different world of possibilities. After his untimely death, I kind of took over his lectures on genetic programming. For me, teaching is about extending his legacy to the newer generations, helping people the same way I was helped, to understand the art of the possible. So that’s how I ended up in academia.
“I actually find it extremely hard to be both in academia and in industry because they’re both very time-consuming. You need to be very strict with your time,” says Tsigkari. “Having said that, it gives fantastic opportunities to educate newer generations with notions you have in industry. I do not simply show my students an algorithm, but I can also show them its potential by showing them the projects I’ve used it on. It gives people a direct connection between the algorithm (which is quite abstract) and what can be done with it (which is quite tangible). I find that this connection is really interesting, and it’s very interesting for the students as well. I’ve always gotten very positive feedback about having that understanding.
Asked to give advice to students aspiring to be architects or engineers, Tsigkari pauses and admits, “This is a very difficult question. I’m horrible at giving advice; I feel that people should be their own advisers and they should do what feels right for them.”
Despite these comments, Tsigkari gradually offers some striking pieces of advice as she continues. “I think you should always do what feels right for you, and that you should always question everything. I would say you should also always question your own preconceptions of what things are. So if you are on the verge between architecture and engineering, question what these two mean for you. Your preconceptions are going to lead you down one road that may not be what you think it was. Step back; don’t make big plans. Feel your way through things that you’re interested in, and something will always come up.”
Citing her own experience, Tsigkari recalls that “as with everything in my life, I had no plans. I never saw myself in a certain position, ever. Other people had plans for me, which I had never followed. I went to a very traditional school, and I learned a lot, but they were not things I wanted to to do for the rest of my life. I mutated, diversified, and changed myself in order to pursue what I wanted.”
Tsigkari continues, “If I were to advise something, it would be to not tag yourself. Do not call yourself an architect or an engineer or a computer scientist - nowadays, I think the da Vincian perception of a person is what is closer to what we need in order to innovate. It is important to understand various disciplines while always saying to yourself that you know very, very little. That will always drive you to become better. It will take the danger out of what you do and will make a better person out of you.
“I look back at my university years with a sense of newfound introspection. Had I known then what I know now, I would never have chosen architecture - never. I would possibly go into artificial intelligence, robotics, or neuroscience, and do something completely different, because I see even now that these are the things that are interesting to me.”
Reflecting briefly on the direction in which she hopes to steer her future, Tsigkari continues, “I guess that I am trying to shift my path towards those topics that I am interested in. It becomes more difficult as time goes by and you get more responsibility at work, but, you know... I don’t think it’s ever too late.”
“Always question your own preconceptions”: Discussing the future of technology in architecture with Martha Tsigkari of Foster + Partners
2018-02-15
Author:
Amidst the excitement of ACADIA 2017 on MIT’s campus, we found an opportunity to sit down and chat with Martha Tsigkari, who presented the New International Airport Mexico City (2020) with her colleagues. Tsigkari trained as an architect-engineer in Greece before obtaining a master’s degree at The Bartlett’s Architectural Computation programme at UCL, which she describes as “a computer science course for designers and architects.” She has been at the Applied Research + Development (AR+D) group at Foster + Partners’ London office ever since. In this post, we synthesize some of her thoughts on the future of technology in architecture, on the art of collaborating across disciplines, and on the humility necessary for innovation. Quotes have been edited for clarity.
The main focus of Tsigkari’s role and presentation of Foster + Partners’ highly anticipated New International Airport Mexico City was “evidence in performance-driven design. It’s all about how all the analysis and optimization can be incorporated through the life of the model to make for a better solution,” Tsigkari says.
On working with Arup, the engineers on the airport project, Tsigkari says that “it was a fantastic collaboration. The design process was not conventional in that we knew how we wanted the space frame to look aesthetically, so we developed all the processes necessary to create a structurally viable and well-performing space frame. Arup was confident in the processes we had and fully adapted our topology. They would receive our permutations of the final model, analyze them, and return with the sizes of the nodes and elements required. From that feedback we would make some aesthetic decisions; if we saw some really big nodes, for example, we knew that we had to do something with the topology and the smoothing of the space frame at that location.”
New International Airport Mexico City. Copyright Foster + Partners
Aside from performance-based design, the AR+D group at Foster + Partners focuses on multi-faceted and cutting-edge topics. “We see a huge future within architecture in Virtual Reality (VR),” Tsigkari says. “We also do a lot with simulations and optimization; we have written our own simulation engines that run tens or hundreds of times faster than those in the industry. I worked a lot with interoperability - making sure that this simulation works with all the different platforms that we’re using and that they talk with each other. We’re using those tools through optimization processes, whether it’s cognitive computing or genetic algorithms.
“We are also quite heavily involved with innovative interfaces to help designers understand the repercussions of their decisions very early on in the design process,” says Tsigkari. “We’re doing a lot of things with innovative materials and design-to-fabrication processes as well as looking into interesting things like the Internet of Things, seeing how we can make smarter buildings and cities that not only get constant feedback from the experiences that people have, but also better themselves without human input.
Tsigkari emphasizes the significance of nonlinear analyses and adaptive processes in future steps to improve the built environment. “There is a fundamental problem in the way we design most of our buildings: typically, it is a linear analysis for a specific pseudo-optimal state. For example, we design buildings based on the worst-case scenario of an earthquake. The resulting design is going to be useless for 90% of the time - it is only useful for the one-off chance that an earthquake happens. On the other hand, if you see how nature works, and if you embrace the idea of compliant mechanisms and nonlinear analysis, then you start embracing the ideas of embodied computation that Axel Kilian was explores in his tower, where you don’t optimize based on worst-case scenarios but instead try to design a form intelligent enough to optimize itself based on the feedback it gets and based on a specific state it always needs to return to. For me, this idea is extremely crucial. It feels like a natural next step in how we build.”
Tsigkari goes on to describe an ongoing research collaboration with Autodesk’s Panos Michalatos, Matt Jezyk and Amira Abdel-Rahmani: “We are essentially running nonlinear analyses for compliant mechanisms on the material level. More specifically, we are working with thermally actuated laminates. You can see situations where a facade is no longer a static element, but is externally actuated and adapts.
“A big part of our research right now is to understand the laminate layering required for the desired adaptations. My colleague Marcin Kosicki has been working with TensorFlow to develop a neural network, feeding in different laminates and the associated disfiguration of the material.”
Tsigkari maintains a humble, if not borderline cynical, perspective on the state of technology in architecture today. “Architecture as a profession is, I daresay, backward-looking. The industry is we are very slow to adapt to new technologies. It’s interesting to see that in the past decade, there has been a significant shift towards more computational design processes. I think what made the shift is the development of tools - for example, Grasshopper for Rhino - which made visual scripting quite intuitive. It introduced a different interface for users towards computer-science-based processes.”
How does Tsigkari train students towards such a rapidly evolving field? “What I learned at The Bartlett was not a particular software but computer science and algorithms: how to write a vanilla AI algorithm and how to potentially apply this to design problems. The trick is to get the underlying knowledge of what these processes are and how they could be used. You can use that knowledge in whatever software you want as long as you know what it is, how it works, and what you can expect from it.
“If what we see in Grasshopper is the skin of computational design, what we’re teaching is the bones and muscles of it; the underlying principles of computation. We are teaching algorithms that are not new - other fields have been using these for the past 60 years. In architecture we have started using them in the past decade. The reality is that we’re 60 years behind industries like rocket science, the chemical industries, or the army. It’s interesting to see how people feel extremely proud of using tools that have been around for over half a century and have been successfully used in many other industries with quite innovative outcomes.”
The interdisciplinary nature of the AR+D team helps. “We have people who have architectural backgrounds or engineering backgrounds, or both, but we also have artists, computer scientists, aeronautical engineers... I think that looking at what is achieved in other industries is absolutely key to being able to innovate within our own industry in terms of building processes, materials, and even techniques. Only now are we starting to look at how swarm robotics can affect buildings; techniques like these have been used extensively in other industries in the past with fantastic results. This kind of cross-referencing that can be beneficial for our industry.”
Martha Tsigkari with Francis Aish and Norman Foster at the keynote of Architectural Advances in Geometry Symposium 2016. Image courtesy of AAG 2016
It is by chance that Tsigkari occupies an unusual career path at the intersection of practice and academia. “My involvement with teaching is really driven by my late mentor, Alasdair Turner. He initiated the master’s programme I’m teaching at now, and he was this fantastic personality - a computer scientist, who had a lot of interest in tying computer science, architecture, and philosophy together.
“Alasdair took me from a world where I was unsure where I wanted to be and led me down a rabbit-hole to a completely different world of possibilities. After his untimely death, I kind of took over his lectures on genetic programming. For me, teaching is about extending his legacy to the newer generations, helping people the same way I was helped, to understand the art of the possible. So that’s how I ended up in academia.
“I actually find it extremely hard to be both in academia and in industry because they’re both very time-consuming. You need to be very strict with your time,” says Tsigkari. “Having said that, it gives fantastic opportunities to educate newer generations with notions you have in industry. I do not simply show my students an algorithm, but I can also show them its potential by showing them the projects I’ve used it on. It gives people a direct connection between the algorithm (which is quite abstract) and what can be done with it (which is quite tangible). I find that this connection is really interesting, and it’s very interesting for the students as well. I’ve always gotten very positive feedback about having that understanding.
Asked to give advice to students aspiring to be architects or engineers, Tsigkari pauses and admits, “This is a very difficult question. I’m horrible at giving advice; I feel that people should be their own advisers and they should do what feels right for them.”
Despite these comments, Tsigkari gradually offers some striking pieces of advice as she continues. “I think you should always do what feels right for you, and that you should always question everything. I would say you should also always question your own preconceptions of what things are. So if you are on the verge between architecture and engineering, question what these two mean for you. Your preconceptions are going to lead you down one road that may not be what you think it was. Step back; don’t make big plans. Feel your way through things that you’re interested in, and something will always come up.”
Citing her own experience, Tsigkari recalls that “as with everything in my life, I had no plans. I never saw myself in a certain position, ever. Other people had plans for me, which I had never followed. I went to a very traditional school, and I learned a lot, but they were not things I wanted to to do for the rest of my life. I mutated, diversified, and changed myself in order to pursue what I wanted.”
Tsigkari continues, “If I were to advise something, it would be to not tag yourself. Do not call yourself an architect or an engineer or a computer scientist - nowadays, I think the da Vincian perception of a person is what is closer to what we need in order to innovate. It is important to understand various disciplines while always saying to yourself that you know very, very little. That will always drive you to become better. It will take the danger out of what you do and will make a better person out of you.
“I look back at my university years with a sense of newfound introspection. Had I known then what I know now, I would never have chosen architecture - never. I would possibly go into artificial intelligence, robotics, or neuroscience, and do something completely different, because I see even now that these are the things that are interesting to me.”
Reflecting briefly on the direction in which she hopes to steer her future, Tsigkari continues, “I guess that I am trying to shift my path towards those topics that I am interested in. It becomes more difficult as time goes by and you get more responsibility at work, but, you know... I don’t think it’s ever too late.”
Tags:
-
Computational Tools and Experimental Making in Timber Construction: In Conversation with Christopher Robeller2017-11-03, Authors: Demi Fang Paul Mayencourt
Of the many exciting innovations in digital fabrication permeating architecture research today, the work of Christopher Robeller stands out in the growing field of timber construction. Robeller completed his PhD in 2015 on the integral mechanical attachment of timber panels at Ecole Polytechnique Federale de Lausanne (EPFL)’s laboratory for timber construction, IBOIS. He spent the following two years as a post-doctoral researcher at the Swiss National Centre in Research (NCCR), applying his research to the construction of a fully functioning building: the Vidy Theatre. Recently appointed Junior Professor in Digital Timber Construction at TU Kaiserslautern, Robeller presented his process and experience working on the Vidy at the ACADIA 2017 conference at MIT in early November of this year.
Robeller also stopped by to chat with us about his work and his thoughts on wood, the built environment, and the importance of experimentation in making. The questions and responses below have been edited for clarity.
Digital Structures: How did you get to be interested in and involved with wood?
Christopher Robeller: My family has been working with timber for a couple of generations, but for more pragmatic things like making windows. My fascination from childhood was always that wood was a nice material to work with - it’s not too dirty, and it’s something you can craft. It’s even got a nice smell to it! It’s a material I’m very passionate about.
DS: Can you describe your training in architecture and/or engineering?
CR: I studied architecture at the London Metropolitan University. It was not a mixed course, but I was always very interested in engineering at the same time. I was very impressed by all of the creativity and ideas being generated in architecture school, but there was a point where I realized that in order to make it really work, you have to overcome a lot of engineering challenges, and only if you really manage that can you make really great architecture.
I have combined my interests in architecture and engineering in the last few years. I first worked with Achim Menges, through which I collaborated a bit with Jan Knippers’s laboratory, a team of mostly engineers. When I went to IBOIS at EPFL for my PhD, I found that I was one of the few architects - there were times when I was one of two architects on a ten-person team.
It would be a shame for a building to have a strong and interesting architectural concept but have details that don’t match the quality of the rest of the building. I found an opportunity through the PhD to focus on those more in-depth aspects of geometry, fabrication, and engineering.
DS: What are your thoughts on relationship between architecture and engineering?
CR: In my traditional experience in architecture, there is not much interaction. You expect the engineer to figure it out, and most projects rely on the state-of-the-art. Architects and engineers get to work much more closely together in more experimental projects in academia.
Computational tools offer a chance for architects and engineers to work together. These tools offer control over design, and that control is valuable in both fields. There is only so much you can do with a software that comes off the shelf that was developed for certain purpose; if you want to use the software for a different purpose, you have to modify the software to make it do what you want it to do. Architects and engineers are starting to take advantage of this.
This area is where the two fields reach a bit of a common language. I am seeing computer scientists, civil engineers, and architects work on similar collaborative models. You might find a very interesting solution for your architectural or engineering problem in some algorithm that has just been developed by some computer scientists. Then you can get together and plug in together if you’re working on a common ground such as a common programming language.
DS: What are your thoughts on the relationship between academia and practice?
CR: They can be worlds apart, especially in timber construction. The community of timber construction is highly skilled but can sometimes be rather conservative. On the other hand, there is the creative and artistic community of architects who design amazing things with timber. It’s really interesting how you have to find a balance between these two groups because they can be very far from each other.
Given the complexity of wood, you have to bring the two groups together. You have to talk to the companies in the construction industry that specialize in timber. In design and engineering, we are usually generalists working with many materials, whereas these companies have long ago specialized in one material and have gained a lot of knowledge over the decades. That’s something that should be respected. If you get in touch with them - which you only do through these experimental projects - you learn a lot from them.
There is a lot of discussion right now over the social component of digitalization. There is a danger of neglecting people who are not in the loop. Once again, computational tools allow you to integrate people in industry into the design process. I think we’ve done that with the Vidy Theatre: we went to companies, talked to the experts there, and included them in the process. I specifically developed a program that the fabricator there could use. We didn’t use software that eliminate the engineer and the fabricator from the design and manufacturing process. It’s something we should think about: how these digital workflows can incorporate specialists.
DS: Do you hope to continue bridging these fields - architecture and engineering, and research and practice - through your new professorship?
CR: I am definitely trying to bring the four worlds together. People in practice already know how to do things; they’re absolute professionals in the state-of-the-art. In teaching, the beauty is in not having that expertise yet. This lets you think about things in a completely different way, in a free and open way, and you might come up with interesting and intuitive solutions.
For example, I was making the first prototype for a timber plate shell construction project in the workshop by myself, with my hands. I was assembling the prototype on its side because intuitively it made sense to allow the weight of the elements to help with insertion. But in building design, it was being designed right-side-up as usual, and that was what was causing all the problems when we tried to put together a larger prototype. It wasn’t until we finally thought back to the first prototype that I built sideways that we realized what the problem was. I might not have had that experience if I hadn’t made that prototype myself.
Timber plate shell prototype assembled on its side. Image courtesy of Christopher Robeller.
Great architects and engineers are people who quite often have been working physically themselves making things, making prototypes and models. This very rarely happens in actual architecture-engineering design processes - it’s only in academia that a designer of a building actually goes and makes not only a representational model but a functional model of some joint or assembly - himself.
Robeller (left) chats with DS students Courtney Stephen (middle) and Paul Mayencourt (right).
DS: What is something that excites you the most about future possibilities in wood?
CR: We can do amazing things with timber in fabrication, and I think that’s the biggest development in the last ten, twenty years. If you had shown me our work on the Vidy Theatre ten years ago, I would have thought it was magic. Now having done all of it, it doesn’t really seem like magic anymore.
We have come a far way, and it’s much easier to do these things now. While geometry processing and fabrication have become more manageable, the building implementations allow us to focus on new challenges such as integrated concepts for structural engineering and building physics.
One reason I went to IBOIS is because of their machinery (5-axis CNC machine). If you want to experiment with the making of today, you need the technology to be accessible; you don’t have that everywhere. In educational institutions, it’s very important to not only have the technology but to have it accessible to the greater community.
It’s funny, I talked to companies like Blumer Lehmann - they had their first 5-axis machine in 1985. That’s how long they’ve had it! Mechanically, not much has changed. You probably could have done the Vidy Theatre back then. The computer was surely capable enough. The limitation was accessibility: you didn’t have the CNC machinery in universities, at least in architecture and engineering. CNC technology may have been developed at MIT, but it took a long time for it to come into architecture and building in a way that’s accessible to the architecture research community.
Construction of Vidy Theatre. Image courtesy of Christopher Robeller.
Another exciting challenge I see is that not only do we have something very beautiful, but we also have something that can make a positive impact in terms of the ecological construction that we need so much. It’s like having your cake and eating it too! We have something beautiful, something interesting, we can address the challenges of digitalization by making jobs more pleasant and more interesting and less hard manual work, and at the same time we can maybe make it more ecologic. But that’s really a maybe; I’m very self-critical about my work so far, and it has not been something focusing on sustainability - yet. But this is clearly something I see as a realistic possibility and something I want to look more into.
DS: Do you have any advice for young researchers and architects who are interested in exploring and applying timber innovations?
CR: Be passionate and be creative. When you first begin as a student, you’re very free from any state-of-the-art that tells you how things are supposed to work. You have to use the moment. Eventually, of course, you have to learn all of the things, but every stage of the journey is an interesting step.
Computational Tools and Experimental Making in Timber Construction: In Conversation with Christopher Robeller
2017-11-03
Authors:
Of the many exciting innovations in digital fabrication permeating architecture research today, the work of Christopher Robeller stands out in the growing field of timber construction. Robeller completed his PhD in 2015 on the integral mechanical attachment of timber panels at Ecole Polytechnique Federale de Lausanne (EPFL)’s laboratory for timber construction, IBOIS. He spent the following two years as a post-doctoral researcher at the Swiss National Centre in Research (NCCR), applying his research to the construction of a fully functioning building: the Vidy Theatre. Recently appointed Junior Professor in Digital Timber Construction at TU Kaiserslautern, Robeller presented his process and experience working on the Vidy at the ACADIA 2017 conference at MIT in early November of this year.
Robeller also stopped by to chat with us about his work and his thoughts on wood, the built environment, and the importance of experimentation in making. The questions and responses below have been edited for clarity.
Digital Structures: How did you get to be interested in and involved with wood?
Christopher Robeller: My family has been working with timber for a couple of generations, but for more pragmatic things like making windows. My fascination from childhood was always that wood was a nice material to work with - it’s not too dirty, and it’s something you can craft. It’s even got a nice smell to it! It’s a material I’m very passionate about.
DS: Can you describe your training in architecture and/or engineering?
CR: I studied architecture at the London Metropolitan University. It was not a mixed course, but I was always very interested in engineering at the same time. I was very impressed by all of the creativity and ideas being generated in architecture school, but there was a point where I realized that in order to make it really work, you have to overcome a lot of engineering challenges, and only if you really manage that can you make really great architecture.
I have combined my interests in architecture and engineering in the last few years. I first worked with Achim Menges, through which I collaborated a bit with Jan Knippers’s laboratory, a team of mostly engineers. When I went to IBOIS at EPFL for my PhD, I found that I was one of the few architects - there were times when I was one of two architects on a ten-person team.
It would be a shame for a building to have a strong and interesting architectural concept but have details that don’t match the quality of the rest of the building. I found an opportunity through the PhD to focus on those more in-depth aspects of geometry, fabrication, and engineering.
DS: What are your thoughts on relationship between architecture and engineering?
CR: In my traditional experience in architecture, there is not much interaction. You expect the engineer to figure it out, and most projects rely on the state-of-the-art. Architects and engineers get to work much more closely together in more experimental projects in academia.
Computational tools offer a chance for architects and engineers to work together. These tools offer control over design, and that control is valuable in both fields. There is only so much you can do with a software that comes off the shelf that was developed for certain purpose; if you want to use the software for a different purpose, you have to modify the software to make it do what you want it to do. Architects and engineers are starting to take advantage of this.
This area is where the two fields reach a bit of a common language. I am seeing computer scientists, civil engineers, and architects work on similar collaborative models. You might find a very interesting solution for your architectural or engineering problem in some algorithm that has just been developed by some computer scientists. Then you can get together and plug in together if you’re working on a common ground such as a common programming language.
DS: What are your thoughts on the relationship between academia and practice?
CR: They can be worlds apart, especially in timber construction. The community of timber construction is highly skilled but can sometimes be rather conservative. On the other hand, there is the creative and artistic community of architects who design amazing things with timber. It’s really interesting how you have to find a balance between these two groups because they can be very far from each other.
Given the complexity of wood, you have to bring the two groups together. You have to talk to the companies in the construction industry that specialize in timber. In design and engineering, we are usually generalists working with many materials, whereas these companies have long ago specialized in one material and have gained a lot of knowledge over the decades. That’s something that should be respected. If you get in touch with them - which you only do through these experimental projects - you learn a lot from them.
There is a lot of discussion right now over the social component of digitalization. There is a danger of neglecting people who are not in the loop. Once again, computational tools allow you to integrate people in industry into the design process. I think we’ve done that with the Vidy Theatre: we went to companies, talked to the experts there, and included them in the process. I specifically developed a program that the fabricator there could use. We didn’t use software that eliminate the engineer and the fabricator from the design and manufacturing process. It’s something we should think about: how these digital workflows can incorporate specialists.
DS: Do you hope to continue bridging these fields - architecture and engineering, and research and practice - through your new professorship?
CR: I am definitely trying to bring the four worlds together. People in practice already know how to do things; they’re absolute professionals in the state-of-the-art. In teaching, the beauty is in not having that expertise yet. This lets you think about things in a completely different way, in a free and open way, and you might come up with interesting and intuitive solutions.
For example, I was making the first prototype for a timber plate shell construction project in the workshop by myself, with my hands. I was assembling the prototype on its side because intuitively it made sense to allow the weight of the elements to help with insertion. But in building design, it was being designed right-side-up as usual, and that was what was causing all the problems when we tried to put together a larger prototype. It wasn’t until we finally thought back to the first prototype that I built sideways that we realized what the problem was. I might not have had that experience if I hadn’t made that prototype myself.
Timber plate shell prototype assembled on its side. Image courtesy of Christopher Robeller.
Great architects and engineers are people who quite often have been working physically themselves making things, making prototypes and models. This very rarely happens in actual architecture-engineering design processes - it’s only in academia that a designer of a building actually goes and makes not only a representational model but a functional model of some joint or assembly - himself.
Robeller (left) chats with DS students Courtney Stephen (middle) and Paul Mayencourt (right).
DS: What is something that excites you the most about future possibilities in wood?
CR: We can do amazing things with timber in fabrication, and I think that’s the biggest development in the last ten, twenty years. If you had shown me our work on the Vidy Theatre ten years ago, I would have thought it was magic. Now having done all of it, it doesn’t really seem like magic anymore.
We have come a far way, and it’s much easier to do these things now. While geometry processing and fabrication have become more manageable, the building implementations allow us to focus on new challenges such as integrated concepts for structural engineering and building physics.
One reason I went to IBOIS is because of their machinery (5-axis CNC machine). If you want to experiment with the making of today, you need the technology to be accessible; you don’t have that everywhere. In educational institutions, it’s very important to not only have the technology but to have it accessible to the greater community.
It’s funny, I talked to companies like Blumer Lehmann - they had their first 5-axis machine in 1985. That’s how long they’ve had it! Mechanically, not much has changed. You probably could have done the Vidy Theatre back then. The computer was surely capable enough. The limitation was accessibility: you didn’t have the CNC machinery in universities, at least in architecture and engineering. CNC technology may have been developed at MIT, but it took a long time for it to come into architecture and building in a way that’s accessible to the architecture research community.
Construction of Vidy Theatre. Image courtesy of Christopher Robeller.
Another exciting challenge I see is that not only do we have something very beautiful, but we also have something that can make a positive impact in terms of the ecological construction that we need so much. It’s like having your cake and eating it too! We have something beautiful, something interesting, we can address the challenges of digitalization by making jobs more pleasant and more interesting and less hard manual work, and at the same time we can maybe make it more ecologic. But that’s really a maybe; I’m very self-critical about my work so far, and it has not been something focusing on sustainability - yet. But this is clearly something I see as a realistic possibility and something I want to look more into.
DS: Do you have any advice for young researchers and architects who are interested in exploring and applying timber innovations?
CR: Be passionate and be creative. When you first begin as a student, you’re very free from any state-of-the-art that tells you how things are supposed to work. You have to use the moment. Eventually, of course, you have to learn all of the things, but every stage of the journey is an interesting step.
Tags:
-
Interdisciplinary Innovation: A Closer Look at Shaping Ultra-Thin Glass with Sophie Pennetier2017-10-04, Authors: Pierre Cuvilliers Demi Fang
Structural engineer Sophie Pennetier has worked on a wide range of specialty structures ranging from the National Museum of African American History and Culture to the Mexico City Airport in firms such as RFR, Guy Nordenson and Associates, SHoP Construction, and Arup. Beyond this accomplished track record in structural engineering, all within ten years of graduating from university, Pennetier has already begun to challenge the boundaries of the role of the engineer.
A recipient of the Jerry Raphael fellowship from the Metropolitan Contemporary Glass Group and Urban Glass Brooklyn in 2016, Pennetier was awarded the opportunity to explore the possibilities in cold bent ultra-thin glass and to apply the knowledge as her own “designer, engineer, and maker” of a small glass sculpture. The process was additionally supported by Corning Inc, Coresix Inc, and Arup. Pennetier stopped by MIT in early October to give us a presentation on “Shaping Ultra-Thin Glass.” She shared with us the process of developing of her project, including steps such as testing, design, analysis, and fabrication. She also (bravely) entrusted us with handling a few samples of the glass to feel its flexibility. We sat down with her afterwards to chat about her experiences, her career, and her thoughts.
Pennetier presents her work in ultra-thin glass to master's of architecture students in Prof. Caitlin Mueller's Building Structural Systems II class.
While Pennetier’s sculpture project has greatly benefited from her background as a structural engineer, the work undoubtedly sits on the cusp of art and engineering. She cites Irish structural engineer Peter Rice as an inspiration. “One project I find particularly poetic is the Théâtre de la pleine Lune, the Full Moon Theatre (Saint-Andre-de-Bueges, France, 1992), which is a stage lit by moonlight. Mirrors are oriented such that it captures moonlight and reflects it onto the stage. It’s very inspiring that Rice worked on that project as an engineer. I think it’s essential to be at the border of art and engineering so that we can keep making buildings that inspire us, rather than just containers.”
As elegant as her sculpture is, the project also represents an innovative step. “Ultra-thin glass is particularly lightweight, clear, and scratch-resistant. Corning invented this material decades ago and yet at the time there was no application for it. In parallel, at least two markets are interested in the material: the automotive industry and the electronics industry. The automotive industry is looking to make lighter cars that are still robust enough for security, while the electronics industry is interested in making lighter, clearer, scratch-resistant electronics with the glass.” Pennetier explains that as a company, Corning maintains a hopeful eye on steering the material into the automotive market, which will likely have a quicker and larger return investment than the field of architecture. In contrast, buildings using this material may remain few and far between for now.
Does Pennetier mind that the built environment may not be the primary application for her research? A believer in interdisciplinary innovation, Pennetier points out that Peter Rice’s development of structural glass was informed by aeronautics knowledge. “The demands between cars and buildings may be different, but if anyone pushes the technology, it is beneficial for any industry. No one is really reinventing the wheel.” She adds, “My vision is to design a building envelope with ultra-thin glass, so I’m happy to resolve the material challenges on any path in this direction.”
Pennetier’s ideas on innovation are not purely motivated by the advancement of science. Having practiced in both Europe and the US, Pennetier observes that “innovation comes with breaking the rules.” She noticed that structural innovation was made more possible in the US, where the engineer-of-record was able to take more risks per professional liability, in contrast to the heavy approval process required in Europe to engineer beyond the code. However, she firmly believes that the greater freedoms possible in the US should be tempered by the engineer’s social responsibility. “For example, if I am designing a glass balustrade, I have the responsibility of making a redundant system to protect the lives of people. In the US code today - which will change soon - you can still use non-laminated tempered glass, a very resistant security glass. However, if the glass has no interlayer, it doesn’t prevent you from falling when it’s broken, which can be very dangerous. So I will not design freely just because the code lets me; ethics are an important driver as an engineer and designer.”
Pennetier maintains this social awareness for her future work in ultra-thin glass. “We have glass everywhere, and it is getting thinner in all industries. Ultra-thin glass may take a lot of energy to fabricate, but it is recyclable and lighter than regular glass, coming in spools that make it easier to transport during the manufacturing process. There is potential to use this material to make processes greener. What’s next for me is ensuring there is a viable social context for this material. My sculpture succeeds as a mechanical prototype, but we still need to make sure it has a meaning for our buildings.
What advice would she give to engineering students looking to create art? “Maintain a project-oriented mindset,” she says. She cites her experience as a project manager in practice as crucial to the management of this independent project. These skills include risk management and time management. Her experience as a PM also enabled her to effectively engage with her collaborators; her work was additionally supported by Corning Inc. and Coresix Inc. “At one point my collaborators nearly dropped the project because it was too expensive. I made many phone calls and was eventually able to negotiate a compromise.”
On a more personal level, Pennetier encourages engineering students to “recognize the fun. Find what makes you feel alive; that kind of motivation will take you far. Engineers rarely take the artistic path, so don’t be afraid to let your crazy idea bloom.”
Interdisciplinary Innovation: A Closer Look at Shaping Ultra-Thin Glass with Sophie Pennetier
2017-10-04
Authors:
Structural engineer Sophie Pennetier has worked on a wide range of specialty structures ranging from the National Museum of African American History and Culture to the Mexico City Airport in firms such as RFR, Guy Nordenson and Associates, SHoP Construction, and Arup. Beyond this accomplished track record in structural engineering, all within ten years of graduating from university, Pennetier has already begun to challenge the boundaries of the role of the engineer.
A recipient of the Jerry Raphael fellowship from the Metropolitan Contemporary Glass Group and Urban Glass Brooklyn in 2016, Pennetier was awarded the opportunity to explore the possibilities in cold bent ultra-thin glass and to apply the knowledge as her own “designer, engineer, and maker” of a small glass sculpture. The process was additionally supported by Corning Inc, Coresix Inc, and Arup. Pennetier stopped by MIT in early October to give us a presentation on “Shaping Ultra-Thin Glass.” She shared with us the process of developing of her project, including steps such as testing, design, analysis, and fabrication. She also (bravely) entrusted us with handling a few samples of the glass to feel its flexibility. We sat down with her afterwards to chat about her experiences, her career, and her thoughts.
Pennetier presents her work in ultra-thin glass to master's of architecture students in Prof. Caitlin Mueller's Building Structural Systems II class.
While Pennetier’s sculpture project has greatly benefited from her background as a structural engineer, the work undoubtedly sits on the cusp of art and engineering. She cites Irish structural engineer Peter Rice as an inspiration. “One project I find particularly poetic is the Théâtre de la pleine Lune, the Full Moon Theatre (Saint-Andre-de-Bueges, France, 1992), which is a stage lit by moonlight. Mirrors are oriented such that it captures moonlight and reflects it onto the stage. It’s very inspiring that Rice worked on that project as an engineer. I think it’s essential to be at the border of art and engineering so that we can keep making buildings that inspire us, rather than just containers.”
As elegant as her sculpture is, the project also represents an innovative step. “Ultra-thin glass is particularly lightweight, clear, and scratch-resistant. Corning invented this material decades ago and yet at the time there was no application for it. In parallel, at least two markets are interested in the material: the automotive industry and the electronics industry. The automotive industry is looking to make lighter cars that are still robust enough for security, while the electronics industry is interested in making lighter, clearer, scratch-resistant electronics with the glass.” Pennetier explains that as a company, Corning maintains a hopeful eye on steering the material into the automotive market, which will likely have a quicker and larger return investment than the field of architecture. In contrast, buildings using this material may remain few and far between for now.
Does Pennetier mind that the built environment may not be the primary application for her research? A believer in interdisciplinary innovation, Pennetier points out that Peter Rice’s development of structural glass was informed by aeronautics knowledge. “The demands between cars and buildings may be different, but if anyone pushes the technology, it is beneficial for any industry. No one is really reinventing the wheel.” She adds, “My vision is to design a building envelope with ultra-thin glass, so I’m happy to resolve the material challenges on any path in this direction.”
Pennetier’s ideas on innovation are not purely motivated by the advancement of science. Having practiced in both Europe and the US, Pennetier observes that “innovation comes with breaking the rules.” She noticed that structural innovation was made more possible in the US, where the engineer-of-record was able to take more risks per professional liability, in contrast to the heavy approval process required in Europe to engineer beyond the code. However, she firmly believes that the greater freedoms possible in the US should be tempered by the engineer’s social responsibility. “For example, if I am designing a glass balustrade, I have the responsibility of making a redundant system to protect the lives of people. In the US code today - which will change soon - you can still use non-laminated tempered glass, a very resistant security glass. However, if the glass has no interlayer, it doesn’t prevent you from falling when it’s broken, which can be very dangerous. So I will not design freely just because the code lets me; ethics are an important driver as an engineer and designer.”
Pennetier maintains this social awareness for her future work in ultra-thin glass. “We have glass everywhere, and it is getting thinner in all industries. Ultra-thin glass may take a lot of energy to fabricate, but it is recyclable and lighter than regular glass, coming in spools that make it easier to transport during the manufacturing process. There is potential to use this material to make processes greener. What’s next for me is ensuring there is a viable social context for this material. My sculpture succeeds as a mechanical prototype, but we still need to make sure it has a meaning for our buildings.
What advice would she give to engineering students looking to create art? “Maintain a project-oriented mindset,” she says. She cites her experience as a project manager in practice as crucial to the management of this independent project. These skills include risk management and time management. Her experience as a PM also enabled her to effectively engage with her collaborators; her work was additionally supported by Corning Inc. and Coresix Inc. “At one point my collaborators nearly dropped the project because it was too expensive. I made many phone calls and was eventually able to negotiate a compromise.”
On a more personal level, Pennetier encourages engineering students to “recognize the fun. Find what makes you feel alive; that kind of motivation will take you far. Engineers rarely take the artistic path, so don’t be afraid to let your crazy idea bloom.”
Tags:
-
Digital Structures attends IASS 2017 in Hamburg2017-09-30, Authors: Nathan Brown Paul Mayencourt
Members of the Digital Structures research group recently participated in the 2017 Symposium of the International Association for Shell and Spatial Structures in Hamburg, Germany. This conference brought together researchers from all over the world interested in topics such as digital design technology, shell and membrane structures, deployable structures, and conceptual structural design.
From MIT, Nathan Brown first presented his research on how to use data analysis techniques to automate and simplify early-stage, performance-based design spaces. Next, in a session about inflatable structures, Prof. Caitlin Mueller gave a talk about her research with Valentina Sumini into formfinding for deep space habitats, which could eventually be used to house communities on the Moon or Mars. Finally, after patiently waiting until the last day of the conference, Paul Mayencourt presented his recent work on shape optimization of timber beams, which has the potential to reduce weight and environmental impact in what is perhaps the most commonly used structural member (although columns may have a thing or two to say about that).
The conference also gave Digital Structure members the opportunity to visit historic and contemporary structures in both Hamburg and Berlin. Highlights in Hamburg included the Philharmonie, a glass roof for the central bus station, and a tour of the Hamburg Grossmarkt, a historical concrete roof from 1962, which was organized by the conference. These tours, which often involved a crowd of people exiting a seemingly non-descript, 50-year-old concrete subway station, and then turning around and dodging traffic while trying to get a good picture, must have been curious sight to the locals.
The Philharmonie (left) and interior of the Hamburg Grossmarkt (right)
Berlin also contains many interesting buildings and structures to visit, such as the Sony Center roof, the House of World Cultures, the renovated Olympic Stadium, and the dome on top of the Reichstag building. It also offered the opportunity to visit in person the East Side Gallery, which was the site of a recent Digital Structures bridge design competition submission. As a result of an utter lack of planning, climbing the Reichstag dome was only possible due to a fortuitous, last minute visitation slot opening up at the perfect time. German security must have sensed two young, bright-eyed structural designers who would jump on the opportunity.
Sony Center roof (left) and glass dome of the Reichstag building (right)
Digital Structures members also spent much of the symposium gaining inspiration for how to best organize IASS 2018, which will be held in Boston next July. We are looking forward to hosting next year’s symposium at MIT, and welcome all who are interested in these topics to submit papers and consider participating in the workshops, talks, and other events that will take place next year!
Digital Structures attends IASS 2017 in Hamburg
2017-09-30
Authors:
Members of the Digital Structures research group recently participated in the 2017 Symposium of the International Association for Shell and Spatial Structures in Hamburg, Germany. This conference brought together researchers from all over the world interested in topics such as digital design technology, shell and membrane structures, deployable structures, and conceptual structural design.
From MIT, Nathan Brown first presented his research on how to use data analysis techniques to automate and simplify early-stage, performance-based design spaces. Next, in a session about inflatable structures, Prof. Caitlin Mueller gave a talk about her research with Valentina Sumini into formfinding for deep space habitats, which could eventually be used to house communities on the Moon or Mars. Finally, after patiently waiting until the last day of the conference, Paul Mayencourt presented his recent work on shape optimization of timber beams, which has the potential to reduce weight and environmental impact in what is perhaps the most commonly used structural member (although columns may have a thing or two to say about that).
The conference also gave Digital Structure members the opportunity to visit historic and contemporary structures in both Hamburg and Berlin. Highlights in Hamburg included the Philharmonie, a glass roof for the central bus station, and a tour of the Hamburg Grossmarkt, a historical concrete roof from 1962, which was organized by the conference. These tours, which often involved a crowd of people exiting a seemingly non-descript, 50-year-old concrete subway station, and then turning around and dodging traffic while trying to get a good picture, must have been curious sight to the locals.
The Philharmonie (left) and interior of the Hamburg Grossmarkt (right)
Berlin also contains many interesting buildings and structures to visit, such as the Sony Center roof, the House of World Cultures, the renovated Olympic Stadium, and the dome on top of the Reichstag building. It also offered the opportunity to visit in person the East Side Gallery, which was the site of a recent Digital Structures bridge design competition submission. As a result of an utter lack of planning, climbing the Reichstag dome was only possible due to a fortuitous, last minute visitation slot opening up at the perfect time. German security must have sensed two young, bright-eyed structural designers who would jump on the opportunity.
Sony Center roof (left) and glass dome of the Reichstag building (right)
Digital Structures members also spent much of the symposium gaining inspiration for how to best organize IASS 2018, which will be held in Boston next July. We are looking forward to hosting next year’s symposium at MIT, and welcome all who are interested in these topics to submit papers and consider participating in the workshops, talks, and other events that will take place next year!
Related projects:
Related publications:
Tags: